Automated deep identification of radiopharmaceutical type and body region from PET images

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 151

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IRJNM-32-2_004

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

Introduction: A deep learning pipeline consisting of two deep convolutional neural networks (DeepCNN) was developed, and its capability to differentiate uptake patterns of different radiopharmaceuticals and to further categorize PET images based on the body regions was explored.Methods: We trained two sets of DeepCNN to determine (i) the type of radiopharmaceutical ([۱۸F]FDG and [۶۸Ga]Ga-PSMA) used in imaging (i.e., a binary classification task), and (ii) body region including head and neck, thorax, abdomen, and pelvis (i.e., a ۴-class classification task), using the ۲D axial slices of PET images. The models were trained and tested for five different scan durations, thus studying different noise levels.Results: The accuracy of the binary classification models developed for different scan duration levels was ۹۸.۹%–۹۹.۶%, and for the ۴-class classification models in the range of ۹۸.۳%–۹۹.۹ ([۱۸F]FDG) and ۹۷.۸%–۹۹.۶% ([۶۸Ga]Ga-PSMA).Conclusion: We were able to reliably detect the type of radiopharmaceutical used in PET imaging and the body region of the PET images at different scan duration levels. These deep learning (DL) models can be used together as a preliminary input pipeline for the use of models specific to a type of radiopharmaceutical or body region for different applications and for extracting appropriate data from unclassified images.

نویسندگان

Ali Ghafari

Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Peyman Sheikhzadeh

Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Negisa Seyyedi

Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran

Mehrshad Abbasi

Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran

Shadab Ahamed

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada

Mohammad Reza Ay

Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Arman Rahmim

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kang J, Gao Y, Shi F, Lalush DS, Lin W, ...
  • Lei Y, Dong X, Wang T, Higgins K, Liu T, ...
  • Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose ...
  • Xu J, Gong E, Pauly J, Zaharchuk G. ۲۰۰x low-dose ...
  • an Leeuwen PJ, Donswijk M, Nandurkar R, Stricker P, Ho ...
  • Almuhaideb A, Papathanasiou N, Bomanji J. ۱۸F-FDG PET/CT imaging in ...
  • Bradshaw TJ, McMillan AB. Anatomy and physiology of artificial intelligence ...
  • Ghafari A, Monsef A, Sheikhzadeh P. F-۱۸-FDG PET Image quality ...
  • Ghafari A, Monsef A, Sheikhzadeh P. Image augmentation for image-to-image ...
  • Ghafari A, Sheikhzadeh P, Seyyedi N, Abbasi M, Ay MR. ...
  • Ghafari A, Sheikhzadeh P, Seyyedi N, Abbasi M, Farzenefar S, ...
  • Azar AS, Ghafari A, Najar MO, Rikan SB, Ghafari R, ...
  • Babaei Rikan S, Sorayaie Azar A, Ghafari A, Bagherzadeh Mohasefi ...
  • Liu CC, Qi J. Higher SNR PET image prediction using ...
  • Liu J, Malekzadeh M, Mirian N, Song TA, Liu C, ...
  • Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. ...
  • Yousefirizi F, Pierre Decazes null, Amyar A, Ruan S, Saboury ...
  • Wang H, Udupa JK, Odhner D, Tong Y, Zhao L, ...
  • Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, ...
  • Qayyum A, Anwar SM, Awais M, Majid M. Medical image ...
  • Bradshaw TJ, Boellaard R, Dutta J, Jha AK, Jacobs P, ...
  • Grandini M, Bagli E, Visani G. Metrics for multi-class classification: ...
  • Erdaw Y, Tachbele E. Machine learning model applied on chest ...
  • Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review ...
  • Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, ...
  • نمایش کامل مراجع