پیش بینی مقادیر تبخیر-تعرق روزانه با استفاده از راهبرد ترکیب مدل های درختی با روش تجربی هارگریوز
محل انتشار: فصلنامه دانش آب و خاک، دوره: 34، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 140
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WASO-34-2_007
تاریخ نمایه سازی: 13 تیر 1403
چکیده مقاله:
نیاز دائمی به افزایش تولیدات کشاورزی، همراه با رویدادهای خشکسالی بیشتر و مکرر در کشور، مستلزم ارزیابی دقیق تری از نیازهای آبیاری و در نتیجه برآورد دقیق تر تبخیر و تعرق واقعی است. در سال های اخیر، چندین موضوع مدیریت آب با استفاده از مدل های به دست آمده از تحقیقات هوش مصنوعی مورد توجه قرار گرفته است. هنگام استفاده از این مدل ها، جنبه های چالش برانگیز اصلی با انتخاب بهترین الگوریتم ممکن، انتخاب متغیرهای معرف مناسب و در دسترس بودن مجموعه داده های مناسب نشان داده می شوند. بنابراین، در این مطالعه توانایی مدل های درختی (M۵P و RF) با مدل هارگریوز (Hs) در برآورد تبخیر-تعرق روزانه در ایستگاه های ارومیه و یزد، طی دوره ۲۰۲۱-۲۰۰۰ با استفاده از چهار معیار آماری مورد ارزیابی قرار گرفت. در تمام مدل های بکار گرفته شده، سناریوی برتر مدلی بود که ورودی آن شامل پارامترهای حداقل دما، حداکثر دما، رطوبت نسبی، سرعت باد و ساعات آفتابی بود. نتایج به دست آمده نشان داد که سناریو پنجم مدل M۵P-Hs بهترین عملکرد را در ایستگاه های ارومیه و یزد با داشتن کمترین خطا به ترتیب (mm day-۱) ۳۳/۰ و (mm day-۱) ۲۴/۰ ارائه داد. همچنین نتیجه گرفته شد که سناریو پنجم مدل RF-Hs در ایستگاه های ارومیه و یزد به ترتیب خطای کمتری ((mm day-۱) ۳۶/۰ و (mm day-۱) ۲۶/۰) را نسبت به سایر مدل ها داشته است. نتایج حاصل از این پژوهش نشان داد که پارامتر سرعت باد از مهم ترین پارامترهای هواشناسی مورد نیاز در برآورد تبخیر-تعرق روزانه می باشد، بطوریکه افزودن این پارامتر بالاترین دقت را در تمام مدل ها نتیجه می دهد.
کلیدواژه ها:
نویسندگان
میلاد شرفی
گروه مهندسی آب ، دانشگاه ارومیه ، ارومیه ایران
عرفان عبدی
دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز
مهدی محبیان
دانشجوی کارشناسی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز
سعید صمدیان فرد
دانشگاه تبریز