Deep Learning Automated Differential Diagnosis of Pharyngitis using Smartphone Camera

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 288

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DSAI01_069

تاریخ نمایه سازی: 4 تیر 1403

چکیده مقاله:

In this article, we aimed to diagnose whether patients have bacterial pharyngitis ornonbacterial pharyngitis. To achieve this, a dataset from ۵۷۹ patients was collected, and at leastfour general practitioners diagnosed each sample. Data augmentation methods were employedto increase the sample size, and various preprocessing techniques were applied to enhance thequality of images. In this study, we utilized a Convolutional Neural Network (CNN) and twotransformers for binary classification. The results demonstrate the capability of deep learningmodels to classify pharyngitis into bacterial and nonbacterial categories based on images takenby smartphone cameras with high accuracy.

نویسندگان

Negar Shojaei

Faculty of Intelligent System Engineering and Data Sciences, Persian Gulf University, Bushehr, Iran

Ali Behrouzi

Faculty of Intelligent System Engineering and Data Sciences, Persian Gulf University, Bushehr, Iran

Habib Rostami

Faculty of Intelligent System Engineering and Data Sciences, Persian Gulf University, Bushehr, Iran

Amir Sanati

Faculty of Intelligent System Engineering and Data Sciences, Persian Gulf University, Bushehr, Iran

Majid Alimohammadi

Department of of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

Jahanbakhsh Keyvani

Department of of Medicine, Shahrekord University of Medical Sciences, Chaharmahal va Bakhtiyari, Iran