A hybrid content and context-based method for sarcasm detection

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 192

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CKE-7-1_006

تاریخ نمایه سازی: 26 خرداد 1403

چکیده مقاله:

With the growing use of social media, figurative language has become very common on social media platforms. Given its complexity, figurative language can confuse natural language processing systems and lead to incorrect results. To address this issue, researchers have developed methods to detect humor, jokes, irony, and especially sarcasm. To date, most studies have used deep learning methods to identify sarcasm. Some studies have also incorporated context such as previous posts or conversations to improve the accuracy of sarcasm detection. But the context that can be highly effective in detecting the sarcasm of posts is the characteristics of the writer of the posts. So, the present paper aims to develop a hybrid approach that combines content and context features to better identify sarcastic posts. i.e., this study additionally proposes a deep learning method to model the content of tweets and suggests a multi-dimensional method that considers the user’s writing style and personality traits as context features. Several experiments were used to evaluate the effectiveness of the proposed method. The results indicated that the proposed method outperformed baseline methods in sarcasm detection.

نویسندگان

Zahra Keivanlou-Shahrestanaki

Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Mohsen Kahani

Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

Fattane Zarrinkalam

Computer Engineering, School of Engineering, University of Guelph, Canada.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • D. G. Maynard and M. A. Greenwood, “Who cares about ...
  • A. Joshi, P. Bhattacharyya, and M. J. Carman, “Automatic sarcasm ...
  • Silviu Oprea and Walid Magdy. isarcasm: A dataset of intended ...
  • A. Kumar, V. T. Narapareddy, V. A. Srikanth, A. Malapati, ...
  • A. Reyes, P. Rosso, and D. Buscaldi, “From humor recognition ...
  • A. Reyes, P. Rosso, and T. Veale, “A multidimensional approach ...
  • S. K. Bharti, K. S. Babu, and S. K. Jena, ...
  • E. Riloff, A. Qadir, P. Surve, L. De Silva, N. ...
  • R. Akula and I. Garibay, “Interpretable multi-head self-attention architecture for ...
  • P. Carvalho, L. Sarmento, M. J. Silva, and E. De ...
  • R. González-Ibánez, S. Muresan, and N. Wacholder, “Identifying sarcasm in ...
  • O. Tsur, D. Davidov, and A. Rappoport, “ICWSM—a great catchy ...
  • D. Davidov, O. Tsur, and A. Rappoport, “Semi-supervised recognition of ...
  • B. C. Wallace and E. Charniak, “Sparse, contextually informed models ...
  • S. Poria, E. Cambria, D. Hazarika, and P. Vij, “A ...
  • A. Rajadesingan, R. Zafarani, and H. Liu, “Sarcasm detection on ...
  • M. Zhang, Y. Zhang, and G. Fu, “Tweet sarcasm detection ...
  • S. Amir, B. C. Wallace, H. Lyu, and P. C. ...
  • A. Ghosh and T. Veale, “Fracking sarcasm using neural network,” ...
  • L. Liu, D. Zhang, and W. Song, “Modeling sentiment association ...
  • A. Vaswani et al., “Attention is all you need,” Adv. ...
  • T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient ...
  • R.-A. Potamias, G. Siolas, and A. Stafylopatis, “A robust deep ...
  • L. Kumar, A. Somani, and P. Bhattacharyya, “‘ Having ۲ ...
  • Y.-H. Huang, H.-H. Huang, and H.-H. Chen, “Irony detection with ...
  • [۲۶ ۳۸] S. Zhang, X. Zhang, J. Chan, and P. ...
  • Tay, Y., Luu, A. T., Hui, S. C., & Su, ...
  • A. Ghosh and T. Veale, “Magnets for sarcasm: Making sarcasm ...
  • T. Xiong, P. Zhang, H. Zhu, and Y. Yang, “Sarcasm ...
  • A. Kumar and G. Garg, “Empirical study of shallow and ...
  • A. Kumar, S. R. Sangwan, A. Arora, A. Nayyar, and ...
  • A. Onan and M. A. Toçoğlu, “A term weighted neural ...
  • J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: ...
  • Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. ...
  • T. Brown et al., “Language models are few-shot learners,” Adv. ...
  • [۳۶ ] N. Babanejad, H. Davoudi, A. An, and M. ...
  • A. Kumar, V. T. Narapareddy, P. Gupta, V. A. Srikanth, ...
  • B. Liang et al., “Multi-modal sarcasm detection via cross-modal graph ...
  • A. Dosovitskiy et al., “An image is worth ۱۶x۱۶ words: ...
  • E. Savini and C. Caragea, “Intermediate-task transfer learning with BERT ...
  • Z. Wen et al., “Sememe knowledge and auxiliary information enhanced ...
  • M. Yuan, Z. Mengyuan, L. Jiang, Y. Mo, and X. ...
  • Y. Liu et al., “Roberta: A robustly optimized bert pretraining ...
  • A. Conneau et al., “Unsupervised cross-lingual representation learning at scale,” ...
  • P. He, J. Gao, and W. Chen, “Debertav۳: Improving deberta ...
  • Zhang Y, Ma D, Tiwari P, Zhang C, Masud M, ...
  • Yue T, Mao R, Wang H, Hu Z, Cambria E. ...
  • Tan YY, Chow CO, Kanesan J, Chuah JH, Lim Y. ...
  • Vitman O, Kostiuk Y, Sidorov G, Gelbukh A. Sarcasm detection ...
  • Q. Le and T. Mikolov, “Distributed representations of sentences and ...
  • Kadriu A, Abazi L, Abazi H. Albanian text classification: Bag ...
  • F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language ...
  • B. Shmueli, L.-W. Ku, and S. Ray, “Reactive supervision: A ...
  • J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,” ...
  • D. P. Kingma and J. Ba, “Adam: A method for ...
  • A.-C. Băroiu and Ștefan Trăușan-Matu, “Automatic sarcasm detection: Systematic literature ...
  • نمایش کامل مراجع