Enhancing Low-Pass Filter Energy Management with Adaptive State of Charge Limiter for Hybrid Energy Storage in Electric Vehicles
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 8
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 138
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-8_003
تاریخ نمایه سازی: 23 خرداد 1403
چکیده مقاله:
Electric vehicles (EVs) have become a vital solution for environmental transportation; however, challenges related to battery life and power density persist. In pursuit of enhanced EV performance and cost-effectiveness, researchers advocate for Hybrid Energy Storage Systems (HESS), integrating various Energy Storage Systems (ESS). An efficient Energy Management Strategy (EMS) is crucial for optimal power distribution within the HESS. This study introduces a real-time, simple, and practical EMS using a low-pass filter (LPF). However, the LPF lacks State of Charge (SoC) control, necessitating the addition of a SoC Limiter. The static SoC Limiter, while effective, faces challenges in predicting peak loads, leading to suboptimal power-sharing performance. To address this limitation, LPF with Adaptive SoC Limiter (LPF-ASL) is proposed. The LPF-ASL accommodates the peak load by saving some portion of supercapacitor (SC) power for peak load. In an unpredictable initial SC SoC test, LPF-ASL achieves substantial reductions in maximum battery current compared to LPF and Fuzzy Logic Control (FLC) by up to ۲۱.۳۰% and ۲۱.۱۴%, respectively. This underscores the effectiveness of LPF-ASL in optimizing battery life and enhancing power distribution within HESS-equipped EVs.
کلیدواژه ها:
نویسندگان
H. Maghfiroh
Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
O. Wahyunggoro
Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
A. Imam Cahyadi
Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :