Predicting fraud in financial statements using supervised methods: An analytical comparison

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 193

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-8_023

تاریخ نمایه سازی: 20 خرداد 1403

چکیده مقاله:

The current era is known as the "age of information," and the capital market is built on information as the economy's primary engine. The system of financial statements of corporations, which is the most significant source of information used in the capital market, produces an information system called accounting. Fraud and manipulation in these financial statements raise corporate risk, erode investor confidence, and cast doubt on the objectivity of accounting experts. Owing to the significance of fraud, this study aims to offer a way to foretell the likelihood of fraud in the financial statements of businesses admitted to the Tehran Stock Exchange between ۲۰۱۴ and ۲۰۲۱. ۱۸۰ enterprises listed on the stock exchange make up the statistical sample (۵۳۲ years of companies - suspected fraud years and ۹۰۸ years - of non-fraudulent companies). According to the independent auditor's assessment, the existence of dormant assets and items, the doubting of the assumption of continuity of activity, the presence of tax discrepancies with other tax areas, and the dearth of adequate performance tax reserves led to the selection of the companies suspected of fraud. ۹۶ financial ratios have been compiled by examining the theoretical foundations and research. In this research, the supervised methods of support vector machine, K-nearest neighbor, Bayesian network, neural network, decision tree, logistic regression, random forest and the hybrid method (bagging) have been used. The results of the research showed that the performance evaluation criteria of precision, accuracy, sensitivity, and F-Measure and efficiency (ROC) and the accuracy result of the confusion matrix in the combined method (bagging) were ۷۲.۴۵, ۶۱.۲۱, ۶۴.۷۴, ۶۲.۹۳, ۷۳.۵۰, and ۷۲.۴۵ percent, respectively, which indicates the better performance and greater ability of this method to predict the possibility of fraud in financial statements compared to other proposed methods.

نویسندگان

Zahra Nemati

Department of Accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Ali Mohammadi

Department of Accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Ali Bayat

Department of Accounting, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abbas Mirzaei

Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Belgiu and L. Dragut, Random forest in remote sensing: ...
  • C.B. Rjeily and G. Badr, A.H. El Hassani, and E. ...
  • Committee of Audit Standards. Standards and Principles of Accounting and ...
  • S. Dua and X. Du, Data mining and machine learning ...
  • M. Ebrahimi and Sh. Khajavi, Modeling variables affecting fraud detection ...
  • P. Goldmann and H. Kaufman, Anti-Fraud Risk and Control Workbook, ...
  • S. Gupta and S.K. Mehta, Data mining-based financial statement fraud ...
  • J. Han, M. Kamber, and J. Pei, Data Mining Concepts ...
  • S. Hidayattullah, I. Surjandari, and E. Laoh, Financial statement fraud ...
  • H. Kamrani and B. Abedini, Formulation of financial statement fraud ...
  • T. Kazemi, Identifying cases of fraud risk in financial statements ...
  • A. Khorasani, Investigating the effects of applying auditing standards in ...
  • M.J. Kranacher and R. Riley, Forensic Accounting and Fraud Examination, ...
  • L.I. Kuncheva, Combining pattern classifiers: Methods and algorithms, John Wiley ...
  • K.M. Leung, Naive Bayesian classifier, Poly. Uni. Dep. Com. Science/Finance ...
  • Fraud, Occupational, A Report to the nations, ACFE: https://acfepublic. s۳. ...
  • N. Omar, Z.A. Johari, and M. Smith, Predicting fraudulent financial ...
  • A. Pradhan, Support vector machine-a survey, Int. J. Emer. Tech. ...
  • Y. Park and D. Reeves, Deriving common malware behavior through ...
  • A.M.R. Nafchi and M. Dastgir, Proposing a Model for Identification ...
  • M. Ramos, Auditors responsibility for fraud detection, J. Account. ۱۹۵ ...
  • P. Ranganathan, C.S. Pramesh, and R. Aggarwal, Common pitfalls in ...
  • S. Rastatter, T. Moe, A. Gangopadhyay, and A. Weaver, Abnormal ...
  • M. Rezaei, M.N. Ardakani, and A.N. Sadrabadi, Fraud detection in ...
  • I. Sadgali, N. Sael, and F. Benabbou, Performance of machine ...
  • A. Shinde, A. Sahu, D. Apley, and G. Rutger, Preimages ...
  • E. Tashdidi, S. Sepasi, H. Etemadi, and A. Azar, A ...
  • W. Xiuguo and D. Shengyong, An analysis on financial statement ...
  • J. Yao, Y. Pan, S. Yang, Y. Chen, and Y. ...
  • J. Yao, J. Zhang, and L. Wang, A financial statement ...
  • M.Y. Alghiani, J.S. Bahri, S.J. Kangarlouei, and A.Z. Rezaei, Explaining ...
  • M.J.Z. Bahmanmiri and E.M. Kalebastani, Ranking the factors affecting financial ...
  • نمایش کامل مراجع