Improving Predictive Precision in Compressive Strength of Steel Fiber-Reinforced Concrete: Utilizing Optimized Deep Learning Methods
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 178
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCNC01_003
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
This study highlights the critical importance of steel fiber-reinforced concrete (SFRC) inconstruction for its enhanced strength and crack resistance. It addresses the challenges inaccurately predicting SFRC's compressive strength due to complex interactions with differentfiber types, which conventional regression models often fail to capture. To improve predictionaccuracy, deep learning (DL) techniques such as One-Dimensional Convolutional NeuralNetworks (۱D-CNN) are employed. The research aims to enhance the precision of predictingSFRC’s ۲۸-day compressive strength using Observer-Teacher-Learner-Based Optimization(OTBLO) to optimize deep learning models. This approach demonstrates the potential of DL tostreamline traditional concrete testing processes. The effectiveness of these models is verifiedwith indicators showing strong performance in predicting SFRC strength, with high Pearsoncorrelation coefficients and low error metrics for ۱D-CNN.
کلیدواژه ها:
Steel fiber-reinforced concrete ، ۱-dimensional convolutional neural networks ، compressive strength ، Observer-Teacher-Learner-Based optimization
نویسندگان
Amanalah Kordi
Department of Civil Engineering, Faculty Of Engineering, Kharazmi University, Tehran, Iran
Seyed hossein hosseini Lavassani
Assistant Professor, Department of Civil Engineering, faculty Of Engineering, KharazmiUniversity, Tehran, Iran.
Peyman Homami
Assistant Professor, Department of Civil Engineering, faculty Of Engineering, KharazmiUniversity, Tehran, Iran.