A Resilience-Oriented Graph-Based Method for Restoration of Critical Loads in Distribution Networks Using Microgrids
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 101
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-13-1_008
تاریخ نمایه سازی: 16 خرداد 1403
چکیده مقاله:
This paper presents a resilience-based approach for critical load restoration in distribution networks using microgrids during extreme events when the main supply is disrupted. Reconfiguration of the distribution network using graph theory is investigated, for which Dijkstra's algorithm is first used to determine the shortest paths between microgrids and critical loads, and then the feasible restoration trees are established by combining the restorable paths. A mixed-integer linear programming (MILP) model is then used to find the optimal selection of feasible restoration trees to make a restoration scheme. The service restoration is implemented with the objectives of maximizing the energy delivered to the critical loads and minimizing the number of switching operations. The limited fuel storage of the generation sources in microgrids, the operational constraints of the network and microgrids, as well as the radiality constraint of the restored sub-networks, are considered the constraints of the optimization problem. The presented method can be used for optimal restoration of critical loads including the number of switching operations which is essential for the ease of implementation of a restoration plan. The results of simulations on a ۱۱۸-bus distribution network demonstrate the efficiency of the procedure.
کلیدواژه ها:
نویسندگان
M. Karimi
Department of Electrical Engineering, University of Zanjan, Zanjan, Iran
M. Eslamian
Department of Electrical Engineering, University of Zanjan, Zanjan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :