A Novel Method for Fish Spoilage Detection based on Fish Eye Images using Deep Convolutional Inception-ResNet-v۲
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 95
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-1_009
تاریخ نمایه سازی: 10 خرداد 1403
چکیده مقاله:
Improving the quality of food industries and the safety and health of the people’s nutrition system is one of the important goals of governments. Fish is an excellent source of protein. Freshness is one of the most important quality criteria for fish that should be selected for consumption. It has been shown that due to improper storage conditions of fish, bacteria, and toxins may cause diseases for human health. The conventional methods of detecting spoilage and disease in fish, i.e. analyzing fish samples in the laboratory, are laborious and time-consuming. In this paper, an automatic method for identifying spoiled fish from fresh fish is proposed. In the proposed method, images of fish eyes are used. Fresh fish are identified by shiny eyes, and poor and stale fish are identified by gray color changes in the eye. In the proposed method, Inception-ResNet-v۲ convolutional neural network is used to extract features. To increase the accuracy of the model and prevent overfitting, only some useful features are selected using the mRMR feature selection method. The mRMR reduces the dimensionality of the data and improves the classification accuracy. Then, since the number of samples is low, the k-fold cross-validation method is used. Finally, for classifying the samples, Naïve bayes and Random forest classifiers are used. The proposed method has reached an accuracy of ۹۷% on the fish eye dataset, which is better than previous references.
کلیدواژه ها:
نویسندگان
Sekine Asadi Amiri
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran
Mahda Nasrolahzadeh
Department of Biomedical Engineering, Hakim Sabzevari University, Sabzevar, Iran
Zeynab Mohammadpoory
Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran
AbdolAli Movahedinia
Department of Marine Biology, University of Mazandaran, Babolsar, Iran
Amirhossein Zare
Department of Computer Engineering, University of Mazandaran, Babolsar, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :