A Fuzzy Inference System to Evaluate Maturity of Green Information Technology
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JITM-16-2_001
تاریخ نمایه سازی: 30 اردیبهشت 1403
چکیده مقاله:
Green information technology is in the spotlight for organizations, helping them save money by using information technology (IT) to achieve the highest efficiency and thus reduce environmental impacts. One of the ways that can help organizations planning for deploying green IT is to evaluate green information technology maturity (GITM). Previous studies have referred to various criteria for green IT evaluation, most of which are qualitative criteria that are difficult to measure and evaluate in ambiguous conditions. The main objective of this study is to identify crucial criteria that affect the GITM level and to design a fuzzy inference system to assess the GITM level in any organization. While using a Mamdani Inference system, inputs can be verbal expressions or crisp values, and the output shows the level of maturity of green information technology. Since green IT knowledge is not modeled in previous studies, modeling it in the current study is a valuable step for organizations confused about various factors they should consider for going green. The main system criteria are the conditions of the data center, office environment, work practice, procurement, and corporate citizenship. Due to the generality of the model used for the knowledge base system development, organizations can use this system for the green IT maturity level determination. The presented inference system helps organizations understand their status of being IT green and plan for the following steps to accomplish their desired maturity level. The proposed inference system has been tested, validated, and used to determine the maturity level of Tehran municipality.
کلیدواژه ها:
نویسندگان
Khadivar
Associate prof., Department of Social Science and Economics, Alzahra Univerity, Tehran, Iran.
Mobini Kashe
MSc., Department of Social Science and Economics, Alzahra Univerity, Tehran, Iran.
Basrayi
MSc. Student, Department of Social Science and Economics, Alzahra Univerity, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :