A comparative study of bankruptcy prediction models of Fulmer and Toffler in firms accepted in Tehran Stock Exchange
محل انتشار: کنفرانس ملی حسابداری, مدیریت مالی و سرمایه گذاری
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,105
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CAFM01_011
تاریخ نمایه سازی: 20 اردیبهشت 1392
چکیده مقاله:
The recent bankruptcies of the mega-corporations worldwide and the fluctuations in Stock Exchange in Iran have created the need for instruments to measure the financial capabilities of the firms. Financial ratios are considered to be one of the tools to measure financial capabilities of the companies. Also several models are used to predict bankruptcy. The environmental changes and the exceeding competition between the entities have limited achieving the expected profit for them. Thus, the financial decision making has become more important compared with the past and has forced the mangers to use the advanced techniques in order to make benefit of the new controlling methods. This research is carried out to present the theoretical fundamentals of the research and compare the results of utilizing Fulmer and Toffler models in order to predict the companies' bankruptcy. Thus, the data related to 90 firms accepted in Tehran Stock Exchange for the years between 2005 and 2010 were tested. To analyze the data, we used the non-parametric binomial statistical methods. The results showed that in predicting the firms' status with Wilcoxon's statistical method, there is a meaningful difference between the results of the two models. Also, in forthcoming studied it was found out that Fulmer's model acts more conservatively in bankruptcy prediction than Toffler model.
کلیدواژه ها:
نویسندگان
Akbar Rahimipoor
Department of accounting, Sirjan Science and Research branch, Islamic Azad university, sirjan, Iran
Abdolmahdi Ansari
Assistant Professor of accounting , Rafsanjan Vali-e-asr University, Rafsanjan, Iran (phd accounting)
Mehdi Alinezhad Sarokolaei
Department of Accounting, Tabriz Branch, Islamic Azad University, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :