تشخیص تداخل فرکانس رادیویی با استفاده از یادگیری عمیق

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 127

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI05_061

تاریخ نمایه سازی: 12 اسفند 1402

چکیده مقاله:

تداخل فرکانس رادیویی (RFI) به عنوان یک سیگنال مزاحمو غیر عادی در نظر گرفته میشود به دلیل تاثیر مضر آن درارتباطات بیسیم. به همین دلیل، کاهش RFI برای جلوگیری از این تاثیر ضروری است. تشخیص و موقعیت یابی RFI اولین گام ها در فرایند کاهش RFI هستند. در این مقاله، دو روش برای تشخیص و موقعیت یابی RFI با استفاده از تکنیک های نظارت شده و نظارت نشده یادگیری عمیق ارائه میدهیم. اولا،تحقیق ما یک الگوریتم تشخیص شیء مبتنی بر شبکه عصبیکانولوشنال را به عنوان یک رویکرد نظارت شده بررسی میکند. این پیشنهاد بر اساس الگوریتم تشخیص شیء (You Only Look Once v۳ (YOLO-v۳ است که بر روی داده های واقعی آلوده به چندین منبع RFI آموزش دیده است. دوما، ما استفاده از Autoencoder کانولوشنال (CAE) را به عنوان یک رویکرد نظارت نشده پیشنهاد می کنیم. نتایج تجربی نشان میدهد که تشخیص RFI توسط YOLO-v۳ نسبتا سریع است و نرخ تشخیص دقیق بسیار خوبی ۹۴% دارد و نشان میدهد که دقت متوسط الگوریتم YOLO-V۳ می تواند به ۸۹% برسد. برای CAE، دقت متوسط ۷۸٪ است و در برخی موارد از رویکرد نظارت شده بهتر عمل می کند. شرایط نمایه - تداخل فرکانس، تشخیص ناهنجاری، Autoencoders, YOLO-v۳ کانولوشنال، یادگیری نظارت شده، یادگیری نظارت نشده.

نویسندگان

سیدمحمدرضا موسوی تقی آبادی

استادیار گروه مهندسی برق و کامپیوتر، دانشگاه فنی و حرفه ای تهران

ایمان نظریان

دانشجوی کارشناسی، گروه برق، دانشگاه آزاد اسلامی، واحد مشهد