Leveraging Causality in Deep Learning for MedicalImage Classification

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 139

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AISOFT01_047

تاریخ نمایه سازی: 28 بهمن 1402

چکیده مقاله:

Medical image classification is a critical task inmodern healthcare, aiding in accurate diagnoses and treatmentplanning. With the advent of Machine Learning (ML) and DeepLearning (DL) techniques, significant progress has been madein automating this process. However, traditional ML and DLmodels often lack the capacity to infer causal relationships,which limits their interpretability and generalizability. Thispaper presents a comprehensive analysis of the integration ofcausality in medical image classification, particularyly,integration of causality in deep learning for the classification,utilizing two distinct datasets: cervical cell images and CT scansof leg bones. Through rigorous evaluation, our approachdemonstrates promising results with an accuracy of ۹۷.۵% forcervical cell image classification and ۹۲.۵% for bone CT scans.This study underscores the transformative potential ofcausality-driven techniques in advancing reliable clinicaldecision support systems.

نویسندگان

Zahra Taghados

Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran

Ramin Takmil

Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran

Zohreh Azimifar

Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran

Malihezaman Monsefi

Department of BiologyShiraz UniversityShiraz, Iran