Leveraging Causality in Deep Learning for MedicalImage Classification
محل انتشار: اولین کنفرانس ملی هوش مصنوعی و مهندسی نرم افزار
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 139
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT01_047
تاریخ نمایه سازی: 28 بهمن 1402
چکیده مقاله:
Medical image classification is a critical task inmodern healthcare, aiding in accurate diagnoses and treatmentplanning. With the advent of Machine Learning (ML) and DeepLearning (DL) techniques, significant progress has been madein automating this process. However, traditional ML and DLmodels often lack the capacity to infer causal relationships,which limits their interpretability and generalizability. Thispaper presents a comprehensive analysis of the integration ofcausality in medical image classification, particularyly,integration of causality in deep learning for the classification,utilizing two distinct datasets: cervical cell images and CT scansof leg bones. Through rigorous evaluation, our approachdemonstrates promising results with an accuracy of ۹۷.۵% forcervical cell image classification and ۹۲.۵% for bone CT scans.This study underscores the transformative potential ofcausality-driven techniques in advancing reliable clinicaldecision support systems.
کلیدواژه ها:
نویسندگان
Zahra Taghados
Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran
Ramin Takmil
Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran
Zohreh Azimifar
Department of Computer Science,Engineering and InformationTechnologyShiraz UniversityShiraz, Iran
Malihezaman Monsefi
Department of BiologyShiraz UniversityShiraz, Iran