Tight- binding study of electronic band structure of anisotropic honeycomb lattice

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 96

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JOPN-1-3_002

تاریخ نمایه سازی: 25 بهمن 1402

چکیده مقاله:

The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the electronic nanostructure of graphene in one direction. For this purpose, we just consider π states, which express electronic characteristics, and compare electronic band of π states with that of isotropic honeycomb lattice in graphene. As a result, by applying pressure or stretching in one direction, the gap will be created in the electronic band at the fermion surface, which can be useful for semiconducting nano devices. The isotropic graphene has a band structure with no energy gap. By applying electrochemical pressure in one direction, the translational symmetry can be broken, therefore an energy gap appears between the two bands.

نویسندگان

maryam Hojatifar

Department of Physics, Isfahan University of Technology, Isfahan, Iran

Peyman Sahebsara

Department of Physics, Isfahan University of Technology, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Min, J. E. Hill, N. A. Sinitsyn, B. R. ...
  • K. Novoselov, S. Andre, K. Geim, Sergei V. Morozov, D. ...
  • P. Dietl, Numerical studies of electronic transport through Graphene nanoribbons ...
  • http://nobelprize.org/nobel_prizes/physics/laureates/ (۲۰۱۰) ...
  • K. Wakabayashi, Y. Takane, M. Yamamoto, & M. Sigrist, Electronic ...
  • G. Grosso, and G. P. Parravicini, Solid State Physics ACADEMIC ...
  • B. Gharekhanlou, and S. Khorasani, An overview of tight-binding method ...
  • W. Ashley Harrison, Electronic Structure and the Properties of Solids. ...
  • RM. Martin, Electronic Structure: Basic Theory and Practice Methods, Cambridge ...
  • W. Guangquan, Strongly Correlated phases in the anisotropic honeycomb lattice, ...
  • S. Reich, J. Maultzsch, C. Thomsen, & P. Ordejon, Tight-binding ...
  • M. Roy, and P. A. Maksym, Semiconducting carbon nanotube quantum ...
  • V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, ...
  • H. Bruus, F. Karsten, Many-body quantum theory in condensed matter ...
  • N. A. Pike, and D. Stroud, Tight-binding model for adatoms ...
  • نمایش کامل مراجع