Single machine preemptive scheduling Considering Energy Consumption and Predicting Machine failures with Data Mining Approach
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-34-4_006
تاریخ نمایه سازی: 17 بهمن 1402
چکیده مقاله:
Prediction of unexpected incidents and energy consumption are some industry issues and problems. The present study addressed the single machine scheduling with preemption and considering failures. This study also aimed at minimizing earliness and tardiness penalties and job expansion and compression. The present study presented a mathematical model for this problem by considering processing time, machine idle, release time, rotational speed and torque, failure time, and machine availability after repair and maintenance. The failure time has been predicted using a machine learning algorithm. The results indicate that the proposed model is useful for problems with ۶-job dimensions. This study solves this problem in two parts. The first part predicts failures and obtained some rules to correct the process, and the second includes the sequence of single-machine scheduling operations. In the second part, the scheduling model was used considering these failures and machine idle in single-machine scheduling to achieve an optimal sequence, minimize energy consumption, and reduce failures.
کلیدواژه ها:
نویسندگان
Ali Qorbani
MSc student at the Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
Yousef Rabbani
Assistant professor, Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
Reza Kamranrad
Assistant professor, Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :