Single machine preemptive scheduling Considering Energy Consumption and Predicting Machine failures with Data Mining Approach

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEPR-34-4_006

تاریخ نمایه سازی: 17 بهمن 1402

چکیده مقاله:

Prediction of unexpected incidents and energy consumption are some industry issues and problems. The present study addressed the single machine scheduling with preemption and considering failures. This study also aimed at minimizing earliness and tardiness penalties and job expansion and compression. The present study presented a mathematical model for this problem by considering processing time, machine idle, release time, rotational speed and torque, failure time, and machine availability after repair and maintenance. The failure time has been predicted using a machine learning algorithm. The results indicate that the proposed model is useful for problems with ۶-job dimensions. This study solves this problem in two parts. The first part predicts failures and obtained some rules to correct the process, and the second includes the sequence of single-machine scheduling operations. In the second part, the scheduling model was used considering these failures and machine idle in single-machine scheduling to achieve an optimal sequence, minimize energy consumption, and reduce failures.

کلیدواژه ها:

Energy ، Just-In-Time ، Machine failure ، Single Machine preemptive Scheduling ، data mining

نویسندگان

Ali Qorbani

MSc student at the Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

Yousef Rabbani

Assistant professor, Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

Reza Kamranrad

Assistant professor, Department of Industrial Engineering, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zainuddin, Z., P.A. EA, and M. Hasan, Predicting machine failure ...
  • Guiras, Z., et al., Optimal maintenance plan for two-level assembly ...
  • Mokhtari, H. and M. Dadgar, Scheduling optimization of a stochastic ...
  • Riazi, M., et al. Detecting the onset of machine failure ...
  • Paprocka, I., Evaluation of the effects of a machine failure ...
  • Wang, Z., C.K. Pang, and T.S. Ng, Robust scheduling optimization ...
  • SobASzek, Ł., A. GolA, and A. Świć, Time-based machine failure ...
  • Smadi, H.J. and A.K. Kamrani, PRODUCT QUALITY-BASED METHODOLOGY FOR MACHINE ...
  • Shokoufi, K. and J. Rezaeian, An exact solution approach using ...
  • Tsao, Y.-C., V.-V. Thanh, and F.-J. Hwang, Energy-efficient single-machine scheduling ...
  • Cui, W.-W. and Z. Lu, Minimizing the makespan on a ...
  • Liu, Q., M. Dong, and F. Chen, Single-machine-based joint optimization ...
  • Zhou, B. and T. Peng, New single machine scheduling with ...
  • Varela, M.L., et al., Collaborative paradigm for single-machine scheduling under ...
  • Premalatha, S. and N. Baskar, Implementation of supervised statistical data ...
  • Gao, D., G.-G. Wang, and W. Pedrycz, Solving fuzzy job-shop ...
  • Cheng, C.-Y., et al., Greedy-based non-dominated sorting genetic algorithm III ...
  • Touat, M., F.B.-S. Tayeb, and B. Benhamou, Exact and metaheuristic ...
  • Perez-Gonzalez, P. and J.M. Framinan, Single machine scheduling with periodic ...
  • Nesello, V., et al., Exact solution of the single-machine scheduling ...
  • Shabtay, D. and M. Zofi, Single machine scheduling with controllable ...
  • Luo, J., et al., Solving the dynamic energy aware job ...
  • Dehghan-Sanej, K., et al., Solving a new robust reverse job ...
  • Zahmani, M.H. and B. Atmani, A data mining based dispatching ...
  • Habib Zahmani, M. and B. Atmani, Multiple dispatching rules allocation ...
  • Jun, S., S. Lee, and H. Chun, Learning dispatching rules ...
  • Schwendemann, S., Z. Amjad, and A. Sikora, A survey of ...
  • Bilski, P., Application of support vector machines to the induction ...
  • Calabrese, M., et al., SOPHIA: An event-based IoT and machine ...
  • Schmidt, B. and L. Wang, Predictive maintenance of machine tool ...
  • Chen, W.-J., Minimizing number of tardy jobs on a single ...
  • Wang, S. and M. Liu, Multi-objective optimization of parallel machine ...
  • Dolipski, M., P. Cheluszka, and P. Sobota, The relevance of ...
  • Hand, D.J., Principles of Data Mining. Drug Safety, ۲۰۰۷. ۳۰(۷): ...
  • Mahesh, B., Machine learning algorithms-a review. International Journal of Science ...
  • Vollert, S., M. Atzmueller, and A. Theissler. Interpretable Machine Learning: ...
  • Ayvaz, S. and K. Alpay, Predictive maintenance system for production ...
  • Chen, C., et al., Predictive maintenance using cox proportional hazard ...
  • Schmitt, J., et al., Predictive model-based quality inspection using Machine ...
  • نمایش کامل مراجع