Hybrid of particle swarm optimization algorithm and fuzzy system for diabetes diagnosis
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 151
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-2_004
تاریخ نمایه سازی: 14 بهمن 1402
چکیده مقاله:
Diabetes is a dangerous disease in which the body is incapable of controlling blood sugar due to inadequate insulin hormone levels. This chronic disease increases blood sugar in patients. Therefore, if it is not controlled, it will cause many complications. A considerable number of people in the world suffer from this disease owing to its damage and lack of its initial diagnosis. The patient visits the doctor frequently to diagnose his/her illness and conducts various tests that are boring and costly. Increasing machine learning approaches through heuristics, and novel methods can somewhat decrease the problems. The current study aims to propose a model that can predict diabetes in patients with high accuracy. The paper introduces a new method based on the assortment of metaheuristic algorithms of a particle swarm and fuzzy inference system. The proposed method utilizes fuzzy systems to binary the particle swarm algorithm. The achieved model is applied to the diabetes dataset and then evaluated using a neural network classifier. The results indicate an increase in classification accuracy to ۹۵.۴۷% compared to other existing methods.
کلیدواژه ها:
نویسندگان
Reza Ghabousian
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Yousef Farhang
Department of Computer Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran
Kambiz Majidzadeh
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Amin Babazadeh Sangar
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :