Evaluating Security Anomalies by Classifying Traffic Using a Multi-Layered Model

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-6-1_003

تاریخ نمایه سازی: 11 بهمن 1402

چکیده مقاله:

Accurate traffic classification is important for various network activities such as accurate network management and proper resource utilization. Port-based approaches, deep packet inspection, and machine learning are widely used techniques for classifying and analyzing network traffic flows. Most classification methods are suitable for small-scale datasets and cannot achieve a high classification accuracy owing to their shallow learning structure and limited learning ability. The emergence of deep learning technology and software-driven networks has enabled the application of classification methods for processing large-scale data.In this study, a two-step classification method based on deep learning algorithms is presented, which can achieve high classification accuracy without manually selecting and extracting features. In the proposed method, an Autoencoder was used to extract features and remove unnecessary and redundant features. In the second step, the proposed method uses the features extracted by the autoencoder from a hybrid deep-learning model based on the CNN and LSTM algorithms to classify network traffic.To evaluate the proposed method, the results of the proposed two-stage hybrid method is compared with comparative algorithms including decision tree, Naïve Bayes, random forest. The proposed combined CNN+LSTM method obtains the best results by obtaining values of ۰.۹۹۷, ۰.۹۷۲, ۰.۹۵۹, and ۰.۹۶۴, respectively, for the evaluation criteria of, accuracy, precision, recall, and F۱ score.The proposed method is a practical and operational method with high accuracy, which can be applied in the real world and used in the detection of security anomalies in networks using traffic classification and network data.

نویسندگان

Mohammadreza Samadzadeh

Department of Computer Iranians University an E-Institute of Higher Education, Tehran, Iran

Najmeh Farajipour Ghohroud

Department of Computer Iranians University an E-Institute of Higher Education, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Naughton, “The evolution of the Internet: from military experiment to ...
  • Cisco, “Cisco annual internet report (۲۰۱۸–۲۰۲۳) white paper. ۲۰۲۰,” Acessado ...
  • Al Khater and R. E. Overill, “Network traffic classification techniques ...
  • Xue, D. Wang, and L. Zhang, “Traffic classification: Issues and ...
  • Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, ...
  • Mestres et al., “Knowledge-defined networking,” ACM SIGCOMM Computer Communication Review, ...
  • Shirmarz and A. Ghaffari, “Performance issues and solutions in SDN-based ...
  • Kalkan, L. Altay, G. Gür, and F. Alagöz, “JESS: Joint ...
  • A. Lima and M. P. Fernandez, "Towards an efficient DDoS ...
  • Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, ...
  • Peng, Z. Sun, X. Zhao, S. Tan, and Z. Sun, ...
  • D. Zang, J. Gong, and X.-Y. Hu, “An adaptive profile-based ...
  • Xu, H. Sun, F. Xiang, and Z. Sun, “Efficient DDoS ...
  • Kokila, S. T. Selvi, and K. Govindarajan, “DDoS detection and ...
  • Dang-Van and H. Truong-Thu, “A multi-criteria based software defined networking ...
  • Misra, S. Thakur, M. Ghosh, and S. K. Saha, “An ...
  • Zamini and G. Montazer, “Credit card fraud detection using autoencoder ...
  • Saha, “A comprehensive guide to convolutional neural networks—the ELI۵ way,” ...
  • نمایش کامل مراجع