A Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 113

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-10-2_012

تاریخ نمایه سازی: 1 بهمن 1402

چکیده مقاله:

Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” from echocardiographic images. Objective: We aimed to develop an algorithm for automated segmentation of the LAA landing zone from ۳D echocardiographic images of the LAA.Material and Methods: In this experimental study, ۲D axial images were derived from the ۳D echo datasets. After image pre-processing, binary images were created using a thresholding method. A binary image matrix was then formed and scanned using ۸-adgacency approach resulting in segmentation of the objects with a closed circumference within the image. Erosion/dilation techniques were then applied to remove small objects. A feature-based approach was then used to firstly detect the LAA region and secondly to identify the device landing zone. Results: A total of ۲۲ datasets were used in this study. The algorithm produced up to ۹ axial images as the proposed landing zone. The selected axial images were compared to the echocardiographic images. In ۱۸ cases (۸۱.۸%), the algorithm successfully segmented the LAA and proposed the landing zone based on the defined features. Conclusion: We have developed a simple and fast algorithm for semi-automated segmentation of the LAA landing zone. Further studies are needed to assess the accuracy of the proposed landing zones by this method.

نویسندگان

A Pakizeh Moghadam

PhD candidate, Department of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran

M Eskandari

MD, Department of Cardiology, King’s College Hospital, London, UK

M J Monaghan

PhD, Department of Cardiology, King’s College Hospital, London, UK

J Haddadnia

PhD, Department of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Arboix A, Alio J. Cardioembolic stroke: clinical features, specific cardiac ...
  • Kamel H, Healey JS. Cardioembolic Stroke. Circ Res. ۲۰۱۷;۱۲۰(۳):۵۱۴-۲۶. doi: ...
  • Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, ...
  • Tzikas A, Holmes Jr DR, Gafoor S, Ruiz CE, Blomstrom-Lundqvist ...
  • Bhat M. Digital-Image-Processing. International Journal of Scientific and Technology Research. ...
  • Lee JS. Digital image smoothing and the sigma filter. Computer ...
  • Horiuchi T, Watanabe K, Tominaga S, editors. Adaptive filtering for ...
  • Senthilkumaran N, Rajesh R. Edge Detection Techniques for Image Segmentation ...
  • Zaitoun NM, Aqel MJ. Survey on Image Segmentation Techniques. Procedia ...
  • Sezgin M, Sankur B. Survey over image thresholding techniques and ...
  • Petrou M, Petrou C. Image Segmentation and Edge Detection. Image ...
  • Maleki I, Ghaffari A, Masdari M. A New Approach for ...
  • نمایش کامل مراجع