Predicting Lung Cancer Patients’ Survival Time via Logistic Regression-based Models in a Quantitative Radiomic Framework

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 131

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-10-4_010

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Selection of the best treatment modalities for lung cancer depends on many factors, like survival time, which are usually determined by imaging. Objectives: To predict the survival time of lung cancer patients using the advantages of both radiomics and logistic regression-based classification models.Material and Methods: Fifty-nine patients with primary lung adenocarcinoma were included in this retrospective study and pre-treatment contrast-enhanced CT images were acquired. The patients lived more than ۲ years were classified as the ‘Alive’ class and otherwise as the ‘Dead’ class. In our proposed quantitative radiomic framework, we first extracted the associated regions of each lung lesion from pre-treatment CT images for each patient via grow cut segmentation algorithm. Then, ۴۰ radiomic features were extracted from the segmented lung lesions. In order to enhance the generalizability of the classification models, the mutual information-based feature selection method was applied to each feature vector. We investigated the performance of six logistic regression-based classification models. Results: It was observed that the mutual information feature selection method can help the classifier to achieve better predictive results. In our study, the Logistic regression (LR) and Dual Coordinate Descent method for Logistic Regression (DCD-LR) models achieved the best results indicating that these classification models have strong potential for classifying the more important class (i.e., the ‘Alive’ class). Conclusion: The proposed quantitative radiomic framework yielded promising results, which can guide physicians to make better and more precise decisions and increase the chance of treatment success.

نویسندگان

S P Shayesteh

PhD, Department of Physiology, Pharmacology and medical physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj. Iran

I Shiri

MSc, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

A H Karami

PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

R Hashemian

MD, PhD, US oncology Inc, Cincinnati, OH, USA

S Kooranifar

MD, Department of Pulmonary Sciences, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran

H Ghaznavi

MD, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran

A Shakeri-Zadeh

PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, ۲۰۱۶. CA ...
  • Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. Adv ...
  • Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, ...
  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, ...
  • Nishino M, Jackman DM, Hatabu H, Yeap BY, Cioffredi LA, ...
  • DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, ...
  • Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and ...
  • Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour ...
  • Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics ...
  • Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, ...
  • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout ...
  • Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, ...
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More ...
  • Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, ...
  • Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. ...
  • Hayano K, Kulkarni NM, Duda DG, Heist RS, Sahani DV. ...
  • Dennie C, Thornhill R, Sethi-Virmani V, Souza CA, Bayanati H, ...
  • Hsieh CJ, Yu HF, Dhillon IS. PASSCoDe: Parallel ASynchronous Stochastic ...
  • Dikaios N, Alkalbani J, Abd-Alazeez M, Sidhu HS, Kirkham A, ...
  • Oberije C, Nalbantov G, Dekker A, Boersma L, Borger J, ...
  • Clark K, Vendt B, Smith K, Freymann J, Kirby J, ...
  • Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, ...
  • Velazquez ER, Parmar C, Jermoumi M, Mak RH, Van Baardwijk ...
  • Panth KM, Leijenaar RT, Carvalho S, Lieuwes NG, Yaromina A, ...
  • Bennasar M, Hicks Y, Setchi R. Feature selection using joint ...
  • Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal ...
  • Li J, Bioucas-Dias JM, Plaza A. Semisupervised hyperspectral image segmentation ...
  • Yu HF, Huang FL, Lin CJ. Dual coordinate descent methods ...
  • Carpenter B. Lazy sparse stochastic gradient descent for regularized multinomial ...
  • Sokolova M, Lapalme G. A systematic analysis of performance measures ...
  • نمایش کامل مراجع