Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 84

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-7-2_010

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Objective: In this research, a new approach termed as “evolutionary-based brain map” is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected frequency bands from different channels within each time frame (window) on the scalp geometry, a sort of two dimensional points along with their values are created; by applying Lagrange interpolation, an image can be constructed. Finally, by averaging the images belonging to successive time frames, an evolutionary-based brain map is created.Results: In this study, twenty subjects from each group voluntarily participated and their EEG signals were caught from ۲۰ channels. The energy of selected bands for different channels are arranged in a feature vector for each time frame and applied to Fisher linear discriminant analysis (FLDA) resulting in ۸۳.۷۴% diagnostic accuracy between the two groups. The achieved result by the proposed method was much higher than applying the energy of standard EEG bands (delta, theta, alpha, beta and gamma) to the same classifier which just provided ۷۷.۰۴% accuracy. Applying T-test to the achieved results supports the supremacy of the proposed method as an automatic powerful diagnostic tool.Conclusion: The proposed brain map is capable of highlighting the same physiological and anatomical changes which are observed in fMRI, PET and CT as differentiable indicators between controls and schizophrenic patients

نویسندگان

R Boostani

Department of Computer Sciences and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

M Sabeti

Department of Computer Engineering, College of Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Association AP. Diagnostic and statistical manual of mental disorders (DSM). ...
  • Organization WH. International statistical classification of diseases and health related ...
  • Cabeza R, Kingstone A. Handbook of functional neuroimaging of cognition. ...
  • Ulmer S, Jansen O. fMRI: basics and clinical application. Springer; ...
  • Hsieh J, editor. Computed tomography: principles, design, artifacts, and recent ...
  • Niedermeyer E, da Silva FL. Electroencephalography: basic principles, clinical applications, ...
  • Sadock BJ. Kaplan & Sadock’s comprehensive textbook of psychiatry: lippincott ...
  • Shenton ME, Dickey CC, Frumin M, McCarley RW. A review ...
  • Boostani R, Graimann B, Moradi MH, Pfurtscheller G. A comparison ...
  • Schreuder M. Towards efficient auditory BCI through optimized paradigms and ...
  • Hoyer D, Bauer R, Conrad K, Galicki M, Doring A, ...
  • Jaffe RS, Fung DL, Behrman KH. Optimal frequency ranges for ...
  • Sabeti M, Boostani R, Katebi S, Price G. Selection of ...
  • Sabeti M, Boostani R, Katebi S, editors. A New approach ...
  • Boostani R, Sadatnezhad K, Sabeti M. An efficient classifier to ...
  • Li Y, Tong S, Liu D, Gai Y, Wang X, ...
  • Sabeti M, Katebi S, Boostani R. Entropy and complexity measures ...
  • Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution ...
  • Wang X, Yang J, Teng X, Xia W, Jensen R. ...
  • Shi Y, editor. Particle swarm optimization: developments, applications and resources. ...
  • Whitley D. A genetic algorithm tutorial. Statistics and computing. ۱۹۹۴;۴:۶۵-۸۵. ...
  • Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by ...
  • Socha K, Dorigo M. Ant colony optimization for continuous domains. ...
  • Galka A. Topics in nonlinear time series analysis: with implications ...
  • Webb AR. Statistical pattern recognition. John Wiley & Sons; ۲۰۰۳ ...
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for ...
  • Foucher JR, Vidailhet P, Chanraud S, Gounot D, Grucker D, ...
  • Hayashi T, Suga H, Hotta N, Andoh T, Ohara M. ...
  • Ragland JD, Gur RC, Raz J, Schroeder L, Kohler CG, ...
  • Gur RE, McGrath C, Chan RM, Schroeder L, Turner T, ...
  • Illowsky BP, Juliano DM, Bigelow LB, Weinberger DR. Stability of ...
  • Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema ...
  • Hulshoff Pol HE, Schnack HG, Bertens MG, van Haren NE, ...
  • نمایش کامل مراجع