Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 7، شماره: 2
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 84
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-7-2_010
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Objective: In this research, a new approach termed as “evolutionary-based brain map†is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected frequency bands from different channels within each time frame (window) on the scalp geometry, a sort of two dimensional points along with their values are created; by applying Lagrange interpolation, an image can be constructed. Finally, by averaging the images belonging to successive time frames, an evolutionary-based brain map is created.Results: In this study, twenty subjects from each group voluntarily participated and their EEG signals were caught from ۲۰ channels. The energy of selected bands for different channels are arranged in a feature vector for each time frame and applied to Fisher linear discriminant analysis (FLDA) resulting in ۸۳.۷۴% diagnostic accuracy between the two groups. The achieved result by the proposed method was much higher than applying the energy of standard EEG bands (delta, theta, alpha, beta and gamma) to the same classifier which just provided ۷۷.۰۴% accuracy. Applying T-test to the achieved results supports the supremacy of the proposed method as an automatic powerful diagnostic tool.Conclusion: The proposed brain map is capable of highlighting the same physiological and anatomical changes which are observed in fMRI, PET and CT as differentiable indicators between controls and schizophrenic patients
کلیدواژه ها:
نویسندگان
R Boostani
Department of Computer Sciences and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
M Sabeti
Department of Computer Engineering, College of Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :