Damage detection by wavelet packet transform and multiclass SVM in structural health monitoring applications

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,792

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISAV02_087

تاریخ نمایه سازی: 26 اسفند 1391

چکیده مقاله:

In recent years, guided ultrasonic wave (GUW) technique has been widely used for detecting different damage types in aerospace, mechanical, and civil engineering structures. In this study, a feature extraction and pattern recognition algorithm based on wavelet packet transform (WPT) and multiclass support vector machines (SVM) is proposed to detect existence and severity of damage in a structural beam. A prismatic beam is simulated in healthy and damaged conditions and the corresponding signals are captured from finite element method (FEM) simulations. The damage is a slot having several depths, located in several positions in the beam. The computed signals from FEM simulations are decomposed by WPT. Then, statistical features of the decomposed signals are extracted. A multiclass SVM classifier is used to classify the conditions of simulation signals into four classes: healthy condition, low, medium and high severity damage conditions. By using 43 signals for training the classifier, it can classify 8 test signals into 4 condition classes perfectly. The performance of the SVM classifier is compared with two different artificial neural network (ANN) classifiers. The ANN classifier that has more hidden neurons can classify the damage conditions perfectly; however, another classifier can classify only 6 signals into correct conditions. Moreover, performance of the introduced algorithm is better than some other feature extraction algorithms including: WPT node energies and the statistical features algorithm

کلیدواژه ها:

Structural health monitoring (SHM) ، wavelet packet transform (WPT) ، multiclass support vector machines (SVM) ، damage detection

نویسندگان

Hossein Zamani HosseinAbadi

Engineering, Isfahan University of Technology

Hamid Reza Mirdamadi

Engineering, Isfahan University of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Z. Su and L. Ye, Identification of damage using lamb ...
  • T. Clarke, F. Simonetti, S. Rohklin and P. Cawley, "Development ...
  • _ Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, ...
  • A. Raghavan and C.E.S. Cesnik, "Review of guided-wave structural health ...
  • H. Kim and H. Melhem, "Damage detection of structures by ...
  • Y. Huang, D. Meyer and S. Nemat-Nasser, "Damage detection with ...
  • J. Grabowska, M. Palacz and M Krawczuka, "Damage identification by ...
  • J. V. Filho, F. G. Baptista and D. J. Inman, ...
  • X. Peng, H. Hao and Z. Li, "Application of wavelet ...
  • D. Chendong, L. Yiyan and G. Qiang, "Structural Health Monitoring ...
  • R. Yan and R. X. Gao, "Wavelet domain principal feature ...
  • M. M. Reda Taha, A. Noureldin, J. L. Lucero and ...
  • nd International Conference on Acoustics & Vibration (ISAV2012), Tehran, Iran, ...
  • H. He and W. Yan, "Structural damage detection with wavelet ...
  • R. J. Barthorpe and K. Worden, "Classification of multi-site damage ...
  • S. Das, A.N. Srivastava and A. Chattop adhyay, "Classification of ...
  • W. Sen and W. Zhuo-bin, "Application of least squarcs support ...
  • H. Song, L. Zhong and B. Han, "Structural damage detection ...
  • L. Bornn, C. R. Farrar, _ Park and K Farinholt, ...
  • S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, ...
  • S. Abe, Support Vector Machines for Pattern Classification, S pringer-Verlag ...
  • K. Sun, G. Meng, F. Li, L. Ye and Y. ...
  • نمایش کامل مراجع