Net Asset Value (NAV) Prediction using Dense Residual Models
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 116
فایل این مقاله در 28 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JITM-15-0_007
تاریخ نمایه سازی: 17 دی 1402
چکیده مقاله:
Net Asset Value (NAV) has long been a key performance metric for mutual fund investors. Due to the considerable fluctuation in the NAV value, it is risky for investors to make investment decisions. As a result, accurate and reliable NAV forecasts can help investors make better decisions and profit. In this research, we have analysed and compared the NAV prediction performance of our proposed deep learning models, such as N-BEATS and NBSL, with the FLANN model in both univariate and multivariate settings for five Indian mutual funds for forecast periods of ۱۵, ۲۰, ۴۵, ۶۳, ۱۲۶, and ۲۵۲ days using RMSE, MAPE, and R۲ as evaluation metrics. A large forecast horizon was chosen to assess the model's consistency, reliability, and accuracy. The result reveals that the N-BEATS model outperforms the FLANN and NBSL models in the univariate setting for all datasets and all prediction horizons. In a multivariate setting, the outcome demonstrates that the N-BEATS model outperforms the FLANN model across all datasets and prediction horizons. The result also shows that, as the number of forecast days grew, our suggested models, notably N-BEATS, maintained consistency and attained the highest R۲ value throughout the longest forecast duration.
کلیدواژه ها:
نویسندگان
Shakeel
Department of Management Studies, Faculty of Management studies, Jamia Millia Islamia, New Delhi-۱۱۰۰۲۵, India.
Siddiqui
Department of Management Studies, Faculty of Management studies, Jamia Millia Islamia, New Delhi-۱۱۰۰۲۵, India.
Alam
Department of Computer Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia,New Delhi-۱۱۰۰۲۵, India.
Kashif
Department of Computer Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia,New Delhi-۱۱۰۰۲۵, India.
Khan
Department of Computer Engineering, Jamia Millia Islamia University, Delhi, India.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :