Design and Development of a New Method for the Production of Nanotoxoids from Clostridium Perfringens Beta Toxin

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 57

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ARCHRAZI-77-6_010

تاریخ نمایه سازی: 6 دی 1402

چکیده مقاله:

In recent years, a nanoparticle-based strategy has shown that non-denatured protein toxins can be used to enhance the appropriate immune response. Once the toxin reacts between the nanoparticles and the protein (toxin), it loses its toxicity because it does not attach to its ligand at the cell surface. The results of the nanoparticle and toxin complex show that the nanoparticles facilitate the internal release of the toxin. Clostridium perfringens beta toxin is produced by Clostridium perfringens type B and C, and diarrhea is the most important disease caused in newborn lambs. When beta toxin forms a complex with nanoparticles, the reaction between the toxin and the nanoparticle leads to the formation of a new form of nanoparticle in which the toxin loses its lethality due to its involvement; therefore, it becomes a toxoid. The nanoparticles used in this research are of poly lactic-co-glycolic acid (PLGA) type, one of the most developed biodegradable polymers. This study aimed to isolate and purify Clostridium perfringens beta toxin and produce its complex with PLGA nanoparticles to form a non-toxic structure. In this study, Clostridium perfringens beta toxin type B was isolated using ammonium sulfate precipitation and gel filtration chromatography. Toxin assay was performed in vivo (lethal dose [LD۵۰]) and in vitro by sodium dodecyl sulphate-polyacrylamide gel electrophoresis at each stage, and the quantity of purified toxin was calculated to be ۱۰ mg/ml. Afterward, the beta toxin antigen was used as the basis for the preparation of nanotoxoid candidates with nanoparticle formulation. Moreover, the PLGA polymer and water-oil-water methods were used to fabricate nanoparticles. Under optimal conditions, nanoparticles without antigen with an average size of ۱۰۰ nm and zeta potential of -۲۳.۲۸ mV, as well as nanoparticles containing antigen with an average size of ۱۲۰ nm and zeta potential of -۱۸.۲ mV, were prepared. When nanoparticles are injected into mice with the beta toxin, the toxin becomes a toxoid with no toxicity effects, and it cannot bind to its receptors and reveal its effects. In this study, the mice showed mild symptoms in one case, and none of them died. The beta and PLGA toxin model could also be applied as a candidate to study the release and immunization of the target animal. In order to achieve antigen regulation using natural polymers, it is recommended to conduct a comparative study between nanoparticles based on natural polymers.

نویسندگان

E Abbasi

Department of Pathology, Science and Research Branch, Islamic Azad University, Tehran, Iran

T Zahraei Salehi

Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

R Pilehchian Langroudi

Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

M Tebyanian

Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

R Yahyaraeyat

Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Volk WA, Gebhardt B, Hammaskjold M, Kaomer R. Medical microbiology: ...
  • Los FC, Randis TM, Aroian RV, Ratner AJ. Role of ...
  • McDonel JL. Clostridium perfringens toxins (type A, B, C, D, ...
  • Fang RH, Luk BT, Hu CM, Zhang L. Engineered nanoparticles ...
  • Luk BT, Hu CM, Fang RH, Dehaini D, Carpenter C, ...
  • Fang RH, Hu CM, Zhang L. Nanoparticles disguised as red ...
  • Avgoustakis K. Polylactic-co-glycolic acid (PLGA). Encyclopedia of biomaterials biomedical engineering. ...
  • Xia Q, Zhang Y, Li Z, Hou X, Feng N. ...
  • Freedman JC, Theoret JR, Wisniewski JA, Uzal FA, Rood JI, ...
  • Nilo L. Measurement of biological activities of purified and crude ...
  • Cavalcanti MTH, Porto T, Porto ALF, Brandi IV, Lima Filho ...
  • Sakurai J, Duncan CL. Purification of beta-toxin from Clostridium perfringens ...
  • Coskun O. Separation techniques: Chromatography. North Clin Istanb. ۲۰۱۶;۳(۲):۱۵۶-۶۰ ...
  • Ebrahimi Samani S, Asghari S, Naderimanesh H, Hoseinkhani S. Optimization ...
  • Navarro MA, McClane BA, Uzal FA. Mechanisms of Action and ...
  • Vasegh R, Ebtekar M, Shafiee Ardestani M, Gholamzad M. Comparison ...
  • Li R, He Y, Zhang S, Qin J, Wang J. ...
  • Erbetta CDAC, Alves RJ, Magalh J, de Souza Freitas RF, ...
  • Gao W, Hu CM, Fang RH, Luk BT, Su J, ...
  • Ehsan Z, Azadeh F, Ahmad Reza J. A New Purification ...
  • Hu CM, Fang RH, Luk BT, Zhang L. Nanoparticle-detained toxins ...
  • Hu CM, Zhang L. Nanotoxoid Vaccines. Nano Today. ۲۰۱۴;۹(۴):۴۰۱-۴ ...
  • نمایش کامل مراجع