Adaptive Neuro-Fuzzy Inference System for Long-term Streamflow Forecasts Using K-fold Cross-validation: Taleghan basin, Iran
محل انتشار: نهمین سمینار بین المللی مهندسی رودخانه
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,377
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IREC09_131
تاریخ نمایه سازی: 19 اسفند 1391
چکیده مقاله:
Streamflow forecasting is an important issue in water resource management. In this paper, the application of Adaptive Neuro-fuzzy Inference System (ANFIS) is investigated in modeling monthly and seasonal streamflow forecasts. Moreover, K-fold as the cross-validation method is used to evaluate test-training data in the model. Results are compared with those of the typical method (i.e., using 75% of data for training and the remaining 25% for testing the validity of the trained model). Study area is Taleghan basin located at northwestern Tehran, Iran. The data used in this research consists of 19 years of monthly streamflow, precipitation and temperature records. To apply temperature and precipitation data in the model, the whole basin was divided into sub-basins and average values of each parameter for each sub-basin were allocated as model input. Finally, results are compared with those of the ANN model. It was found that the forecasting models using K-fold are more reliable. In addition, the ANFIS model shows better performance than the ANN model in predicting peak flows and other model evaluation indices including the Nash-Sutcliffe Efficiency Index and Scatter Index
کلیدواژه ها:
نویسندگان
R Esmaeelzadeh
Ph.D. Student, Department of Civil Engineering, Shahid Chamran University, Ahwaz, Iran
A. B. Dariane
Associate Professor, Department of Civil Engineering, K. N. Toosi University of Tech., Tehran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :