APPLICATION OF EVOLUTIONARY POLYNOMIAL REGRESSION IN ULTRAFILTRATION SYSTEMS CONSIDERING THE EFFECT OF DIFFERENT PARAMETERS ON OILY WASTEWATER TREATMENT
محل انتشار: مجله علوم و فن آوری نفت، دوره: 3، شماره: 1
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 96
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-3-1_002
تاریخ نمایه سازی: 29 آذر 1402
چکیده مقاله:
In the present work, the effects of operating conditions including pH, transmembrane pressure, oil concentration, and temperature on fouling resistance and the rejection of turbidity for a polymeric membrane in an ultrafiltration system of wastewater treatment were studied. A new modeling technique called evolutionary polynomial regression (EPR) was investigated. EPR is a method based on regression algorithm, which combines the best properties of the conventional numerical regression technique. This paper employs the capability of EPR as a powerful tool to develop a formula with a variable number of polynomial coefficients. Herein, the evolutionary polynomial regression approach is adopted on two parametric studies, i.e. total fouling resistance and rejection rate. These parameters are all evaluated as a function of some mentioned independent variables. Maximum average error and minimum average error are obtained to be equal to ۴.۲۵% and ۰.۰۵%, respectively. Therefore, EPR is a practical and useful method to describe a membrane performance.
کلیدواژه ها:
نویسندگان
Amin Reyhani
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
Mahmood Hemmati
Deputy of Technology and International Affair, Research Institute of Petroleum Industry (RIPI).
Fatemeh Rekabdar
Polymer Science and Technology Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
Mehdi Ahmadi
Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :