Line Centered Fuzzy Clustering for Time Series Prediction
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,022
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CCCI06_009
تاریخ نمایه سازی: 13 اسفند 1391
چکیده مقاله:
Time series analysis and prediction has many useful applications in real life problems. Even, in predicting some natural events like solar activity and space weather its application is very essential. Moreover, it has many applications in command & control domain. Some examples in this area can be seen in (wireless) sensor networks, security and environmental monitoring. e.g., forecasting natural events which can help significantly to alleviate the causes of them and also it can help improve the effectiveness of disaster management process. Consequently, different approaches to solve the problem of time series prediction have been suggested.Fuzzy logic, neural network and neuro-fuzzy hybrid methods are among the most frequently used algorithms forthis purpose. In this paper, we propose an algorithm for predicting time series using fuzzy clustering. In this approach clusters are presented by lines as their centers. The suggested method has been tested with both artificial and natural datasets (Mackey-Glass and Natural Kp Series). In comparison with other researched methods we could register notable improvements in NMSE measure. Furthermore, the peak points of Kp are predicted with a higher ratio.
کلیدواژه ها:
نویسندگان
Rahman AliMohammadzadeh
PhD Student of C۴I, Malek-Ashtar University of Technology
Mehdi Emadi
Faculty of Electrical and Computer Engineering Department, Babol University of Technology
Morteza Barari
Faculty of ICT Department, Malek-Ashtar University of Technology,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :