Uplift Modeling Using Artificial Immune System

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCSE-10-2_001

تاریخ نمایه سازی: 18 آذر 1402

چکیده مقاله:

Uplift Modeling aims to detect subgroups in a population with a specific response or reaction to an action taken on the targeted group. In these models, the Treatment set contains objects that have been exposed to some action, such as a marketing campaign or clinical treatment, while in the Control set, they have not. In this study, a novel artificial immune system-based model was designed using an AIRS classifier to solve uplift modeling problems with improved efficiency. In this approach, a predictive model was built for estimating the conditional probability of receiving the desired response from the subpopulation that has taken the action over the relevant probability of the sub-population that has not taken the action. The proposed model was tested on the Hillstorm-visit-w dataset. Experimental results showed a ۱۳۸ percent improvement in the area under the uplift curve which is a measure to assess an uplift model's performance.

کلیدواژه ها:

Uplift Modeling ، Artificial Immune System ، Artificial Immune Recognition System

نویسندگان

Masih Zaamari

Department of Cognitive Science, Carleton University, Ottawa, Ontario, Canada.

Mehdi Bateni

Computer Department, Khansar Campus, University of Isfahan, Isfahan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Hansotia, Behram and Rukstales, Brad. Incremental value modeling. Journal of Interactive ...
  • N. Radcliffe and P. Surry and D. Patrick. Differential response ...
  • A.A. Babalola and R. Belkacemi and S. Zarrabian and R. ...
  • T. Han and K. Kobayashi. Mathematics of Information and Coding ...
  • K. Hillstrom. The MineThatData e-mail analytics and data mining challenge. MineThatData ...
  • S. Jaroszewicz and L. Zaniewicz. Szekely regularization for uplift modeling. Challenges ...
  • G.J. Szekely and M.L. Rizzo. Hierarchical clustering via joint between-within ...
  • MH. Chen and PC. Chang and JL. Wu. A population-based ...
  • نمایش کامل مراجع