Application of Hydraulic Flow Unit Technique for Permeability Prediction in one Iranian Gas Reservoirs, Case Study
محل انتشار: مجله تکنولوژی گاز، دوره: 5، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 132
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JGT-5-1_002
تاریخ نمایه سازی: 29 آبان 1402
چکیده مقاله:
Estimating reservoir permeability in un-cored intervals-wells are a generic problem common for all reservoir engineers. In this paper, routine core analysis and well log data of an actual existing gas reservoir, from southwest west of IRAN, were used to develop a model of matrix permeability in un-cored well by using Hydraulic Flow Unit Approach (HFU). The Graphical Clustering Methods such as histogram analysis and probability plot are used to identify the number of hydraulic flow units. Also, the sum of square errors (SSE) method was used as criterion for confirming the optimal number of HFU’s. Permeability data can be obtained from well tests, cores or logs. Normally, using well log data to derive estimates of permeability is the lowest cost method. Formation permeability controls the strategies involving well completion, stimulation, and reservoir management.Results showed that six HFUs were identified from core data and each unit has its own mean Flow Zone Indicator (FZI). In addition, a correlation between FZI calculated from core data and that obtained from well log data was developed for estimating permeability in un-cored intervals-wells with R-Squared Value of ۰.۶۰. Also, Lorenz plot shows that the flow units ۳ and ۶ have a good porosity and high permeability.
کلیدواژه ها:
نویسندگان
Asghar Gandomkar
Assistant Professor, Chemical and Petroleum Engineering Dept., School of Chemical and Material Eng., Shiraz Branch, Islamic Azad University, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :