Investigating the Relation between LCK Gene Expression with Type ۲ Diabetes Patients in Yazd Diabetes Research Center
محل انتشار: مجله دیابت و چاقی ایران، دوره: 14، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 102
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJDO-14-1_003
تاریخ نمایه سازی: 16 آبان 1402
چکیده مقاله:
Type ۲ diabetes mellitus (T۲DM) is characterized by insulin resistance and insulin secretory defect. Deficiency of cellular immunity is known as one of the factors involved in the pathogenesis of T۲DM. lymphocyte-specific protein tyrosine kinase( LCK) is an important gene involved in the intracellular signaling pathways of lymphocytes. This study aimed at determining and comparing LCK gene expression levels in diabetic patients compared with the healthy controls.
Materials and Methods: In this case-control study, ۶۰ people, including ۳۰ T۲DM and ۳۰ healthy people were included. The expression levels of the LCK gene were measured by real-time polymerase chain reaction and the obtained data were analyzed by T-test in GraphPad Prism۶ software.
Results: The expression level of the LCK gene was increased in diabetic samples compared with the healthy samples (P= ۰.۰۰۰۱).
Conclusion: The results suggested that changes in the expression levels of LCK gene can play a role in the pathogenesis of T۲DM.
کلیدواژه ها:
نویسندگان
Zahra Rahvarzadeh
Biology Department, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
Mehran Dehghanian
Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Mohammad Yahya Vahidi Mehrjardi
Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Mahmood Dehghani Ashkezari
Biology Department, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :