Image-based Discrimination of Ultrasound-Assisted Frozen Meat Using Inception-v۳
محل انتشار: پانزدهمین کنگره ملی و اولین کنگره بین المللی مهندسی مکانیک بیوسیستم و مکانیزاسیون کشاورزی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCAMEM15_215
تاریخ نمایه سازی: 16 آبان 1402
چکیده مقاله:
Categorizing images based on ultrasound power levels can be difficult because of thenuanced differences in image quality. Ultrasound technology utilizes high-frequency soundwaves to generate cavitation bubbles within food structures, and the characteristics of thesebubbles can vary depending on the power levels employed. The objective of this research is toinvestigate the possible applications of deep learning algorithms in categorizing sonicated meatsamples according to their quality attributes, including cooking loss, thawing loss, cutting force,color, and texture. The findings could offer significant insights into the utilization of deeplearning algorithms for analyzing meat quality data and their potential in creating intelligentmeat processing systems. Through training a CNN model on a dataset of images categorizedby ultrasound power levels, the model can identify and comprehend patterns and featuresrelated to specific power levels. The model achieves an accuracy rate of ۹۷.۷۵% for identifyingthawed samples and ۹۷.۶۸% for cooked ones. The model's impressive performance inclassifying the images highlights its capacity to accurately distinguish subtle variations in imagequality and clarity.
کلیدواژه ها:
نویسندگان
Hamed Sardari
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
Mahmoud Soltani Firouz
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
Soleiman Hosseinpour
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran
Pouya Bohlol
Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tehran, Karaj, Iran