Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 145

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JREE-3-3_003

تاریخ نمایه سازی: 10 آبان 1402

چکیده مقاله:

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using ۲۲-year meteorologicaldata, ۱۹ empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this purpose, the meteorological data recorded by Iran Meteorological Organization (۱۹۹۲–۲۰۱۳) was used. These data include: monthly mean daily sunshine duration, monthly mean ambient temperature, monthly mean maximum and minimum ambient temperature and monthly mean relative humidity.Theresults showed that the yearly average solar radiation in the region was ۱۶.۳۷ MJ m .Among the empirical models, the best result was acquired for model (۱۹) with correlation coefficient (r) of ۰.۹۶۶۳. Results also showed that the ANN model trained with total meteorological data in input layer (ANN۵) produces better results in comparison to others. Root Mean Square Error (RMSE) and r for this model were۱.۰۸۰۰ MJ m-۲ and ۰.۹۷۱۴, respectively. Comparison betweenthe model ۱۹ and ANN۵, demonstrated that modeling the monthly mean daily global solar radiationthrough the use of the ANNtechnique, yields better estimates. Mean Percentage Errors (MPE) for these models were ۷.۴۷۵۴% and ۱.۰۰۶۰%, respectively. -۲ day-۱

نویسندگان

Hassan Ghasemi Mobtaker

Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran

Yahya Ajabshirchi

Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran

Seyed Faramarz Ranjbar

Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Mansour Matloobi

Department of Horticultural Science, Faculty of Agriculture,, University of Tabriz, Tabriz, Iran

Morteza Taki

Department of Agricultural Machinery and Mechanization, Ramin Agriculture and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdalla, Y.A.G., ''New correlation of global solar radiation with meteorological ...
  • Adaramola, M.S., ''Estimating global solar radiation using common meteorological data ...
  • Ajayi, O.O., Ohijeagbon, O.D., Nwadialo, C.E. andOlasope, O., ''New model ...
  • Allen, R.,''Self calibrating method for estimating solar radiation from air ...
  • Bhardwaj, S., Sharma, V., Srivastava, S., Sastry, O.S., Bandyopadhyay, B., ...
  • Chandel, S.S., Aggarwal, R.K. and Pandey, A.N., ''New correlation to ...
  • Duffie, J.A. and Beckman, W.A., ''Solar Engineering of Thermal Processes'', ...
  • El-Metwally, M., ''Sunshine and global solar radiation estimation at different ...
  • El-Sebaii, A.A., Al-Ghamdi, A.A., Al-Hazmi, F.S. and Faidah, A.S., ''Estimation ...
  • El-Sebaii, A.A., Al-Hazmi, F.S., Al-Ghamdi, A.A. and Yaghmour, S.J., ''Global, ...
  • Farhadi-Bansouleh, B.M., Sharifi, A. and Van Keulen, H., ''Sensitivity analysis ...
  • Hargreaves, G.L., Hargreaves, G.H. andRiley, P., ''Irrigation water requirement for ...
  • Hasni, A., Sehli, A., Draoui, B., Bassou, A. and Amieur, ...
  • Jafarpur, K. and Yaghoubi, M.A., ''Solar radiation for Shiraz", Iranian ...
  • Jiang, Y., ''Estimation of monthly mean daily diffuse radiation in ...
  • Jin, Z., Yezheng, W.u. and Gang, Y.,''General formula for estimation ...
  • Kaushika, N.D., Tomar, R.K. and Kaushik, S.C., ''Artificial neural network ...
  • Kheradmand, S., Nematollahi, O. and Ayoobi, A.R., ''Clearness index predicting ...
  • Khorasanizadeh, H. and Mohammadi, K., ''Prediction of daily global solar ...
  • Khorasanizadeh, H., Mohammadi, K. and Mostafaeipour, A., ''Establishing a diffuse ...
  • Li, H., Ma, W., Lian, Y. and Wang, X., ''Estimating ...
  • Li, M., Fan, F.L., Liu, H.B., Guo, P.T. and Wu, ...
  • Li, M.F., Tang, X.P., Wu, W. and Liu, H.B.,''General models ...
  • Linares-Rodriguez, A.J., Ruiz-Arias, A. and Pozo-Vazquez, D., ''An artificial neural ...
  • Ogelman, H., Ecevit, A. and Tasdemiroglu, E., ''A new method ...
  • Ozgoren, M., Bilgili, M. and Sahin, B., ''Estimation of global ...
  • Rahimikhoob, A., ''Estimating global solar radiation using artificial neural network ...
  • Ramedani, Z., Omid, M. and Keyhani, A., ''Modeling Solar Energy ...
  • Ramedani, Z., Omid, M., Keyhani, A., Khoshnevisan, B. and Saboohi, ...
  • Robaa, S.M., ''Validation of the existing models for estimating global ...
  • Sabziparvara, A.A. and Shetaee, H., ''Estimation of global solar radiation ...
  • Sen, Z., ''Simple nonlinear solar irradiation estimation model'', Renewable Energy, ...
  • Shamim, M., Remesan, A.R., Bray, M. and Han, D., ''An ...
  • Taki, M., Ajabshirchi, Y. and Mahmoudi, A., ''Prediction of output ...
  • Taki, M., Ajabshirchi, Y., Ranjbar, S.F., Rohani, A. and matloobi, ...
  • Taki, M., Mahmoudi, A., Mobtaker, H.G. and Rahbari, H., ''Energy ...
  • Togrul, I.T. and Togrul, H., ''Global solar radiation over Turkey: ...
  • Waewsak, J., Chancham, C., Mani, M. and Gagnon Y., ''Estimation ...
  • Yadav, A.K. and Chandel, S.S., ''Solar energy potential assessment of ...
  • Zarzo, M. and Marti, P.,''Modelling the variability of solar radiation ...
  • نمایش کامل مراجع