Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 145
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JREE-3-3_003
تاریخ نمایه سازی: 10 آبان 1402
چکیده مقاله:
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using ۲۲-year meteorologicaldata, ۱۹ empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this purpose, the meteorological data recorded by Iran Meteorological Organization (۱۹۹۲–۲۰۱۳) was used. These data include: monthly mean daily sunshine duration, monthly mean ambient temperature, monthly mean maximum and minimum ambient temperature and monthly mean relative humidity.Theresults showed that the yearly average solar radiation in the region was ۱۶.۳۷ MJ m .Among the empirical models, the best result was acquired for model (۱۹) with correlation coefficient (r) of ۰.۹۶۶۳. Results also showed that the ANN model trained with total meteorological data in input layer (ANN۵) produces better results in comparison to others. Root Mean Square Error (RMSE) and r for this model were۱.۰۸۰۰ MJ m-۲ and ۰.۹۷۱۴, respectively. Comparison betweenthe model ۱۹ and ANN۵, demonstrated that modeling the monthly mean daily global solar radiationthrough the use of the ANNtechnique, yields better estimates. Mean Percentage Errors (MPE) for these models were ۷.۴۷۵۴% and ۱.۰۰۶۰%, respectively. -۲ day-۱
کلیدواژه ها:
نویسندگان
Hassan Ghasemi Mobtaker
Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran
Yahya Ajabshirchi
Department of Biosystems Engineering, University of Tabriz, Tabriz, Iran
Seyed Faramarz Ranjbar
Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
Mansour Matloobi
Department of Horticultural Science, Faculty of Agriculture,, University of Tabriz, Tabriz, Iran
Morteza Taki
Department of Agricultural Machinery and Mechanization, Ramin Agriculture and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :