Knee Joint Movement Control Using Hybrid Neuro-prosthesis Based on Persistent D-well Time Allocation Strategy with Muscle Fatigue Overcoming: Simulation Approach

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 148

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JRRS-18-1_004

تاریخ نمایه سازی: 8 آبان 1402

چکیده مقاله:

Introduction: Hybrid neuro-prostheses are used in rehabilitation of individuals with spinal cord injuries. These hybrid neuro-prostheses consist of a robot that moves the knee joint mechanically and a functional electrical stimulation (FES) part that moves the knee joint by electric current stimulation. The main challenge in the use of hybrid neuro-prostheses is muscle fatigue due to electrical stimulation. This study endeavored to reduce muscle fatigue through timing between robot and FES using Persistent D-well TimeMaterials and Methods: A mathematical equation was used to model the knee movement in a hybrid neuro-prostheses. A differential equation was used to describe muscle fatigue. The simulation time was determined one hundred seconds and the goal of simulation was considered to regulate knee joint in angle of sixty degrees. Simulation time was divided into stages and a time interval was set for each stage. At each stage, FES was active for a certain time duration. After this duration until the end of the time frame of the stage, switch occurred between the FES and the robot, based on the muscle fatigue value.Results: At the end of the simulation, the knee was regulated with a root mean square error of ۰.۷۹ degree at the reference angle. Using robots in the timing method reduced muscle fatigue and the muscle fatigue value was limited in a bounded range between ۰.۹۴ and ۰.۹۷.Conclusion: The timing method simulated in this study can be effective for control of knee movement. Based on the results, it is expected that this method can be used in the control of hybrid neuro-prosthesis in practice during which the exercises prescribed by the therapist are rehearsed and the muscle fatigue increment need to be avoided in the client simultaneously.

نویسندگان

شاذان قاجاری

PhD Candidate, Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

ریحانه کاردهی مقدم

Associate Professor, Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

حمیدرضا کبروی

Associate Professor, Scientific Core of Robotic Rehabilitation and Biofeedback, Mashhad Branch, Islamic Azad University, Mashhad, Iran

ناصر پریز

Professor, Department of Electrical Engineering, Mashhad Branch, Islamic Azad University AND Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Anaya F, Thangavel P, Yu H. Hybrid FES robotic gait ...
  • Jun D, Wexler AS, Binder-Macleod SA. A predictive fatigue model. ...
  • Popoviç DB. Hybrid FES-robot devices for training of activities of ...
  • Baud R, Manzoori AR, Ijspeert A, Bouri M. Review of ...
  • Dodson A. A novel user-controlled assisted standing control system for ...
  • Voloshina AS, Collins SH. Lower limb active prosthetic systems In: ...
  • Kirsch NA, Bao X, Alibeji NA, Dicianno BE, Sharma N. ...
  • Zhang D, Ren Y, Gui K, Jia J, Xu W. ...
  • Tu X, Li J, Li J, Su C, Zhang S, ...
  • Gil-Castillo J, Alnajjar F, Koutsou A, Torricelli D, Moreno JC. ...
  • Bao X, Kirsch N, Dodson A, Sharma N. Model predictive ...
  • Sa-e S, Freeman CT, Yang K. Iterative learning control of ...
  • Kirsch N, Alibeji N, Sharma N. Nonlinear model predictive control ...
  • Bao X, Sheng Z, Dicianno BE, Sharma N. A tube-based ...
  • Bao X, Molazadeh V, Dodson A, Dicianno BE, Sharma N. ...
  • Sheng Z, Sun Z, Molazadeh V, Sharma N. Switched control ...
  • Kirsch NA, Alibeji NA, Sharma N. Model predictive control-based dynamic ...
  • Schauer T, Neg+Ñrd NO, Previdi F, Hunt KJ, Fraser MH, ...
  • Popovic D, Stein RB, Oguztoreli N, Lebiedowska M, Jonic S. ...
  • Riener R, Quintern J, Schmidt G. Biomechanical model of the ...
  • Veltink PH, Chizeck HJ, Crago PE, el-Bialy A. Nonlinear joint ...
  • Behn C, Siedler K. Adaptive PID-tracking control of muscle-like actuated ...
  • Dorf RC, Bishop RH. Modern control systems. ۱۲th Upper Saddle ...
  • Kirsch NA, Bao X, Alibeji NA, Dicianno BE, Sharma N. ...
  • Nunes WRBM, Alves UNLT, Sanches MAA, Teixeira MCM, de Carvalho ...
  • Bao X, Mao ZH, Munro P, Sun Z, Sharma N. ...
  • Liberzon D. Switching in systems and control. Boston, MA: Birkhauser; ...
  • Khamar M, Edrisi M, Forghany S. Online usage of biomechanical ...
  • Alibeji NA, Molazadeh V, Dicianno BE, Sharma N. A control ...
  • Wang H, Chen X, Wang J. H∞ sliding mode control ...
  • Kirsch N, Alibeji N, Dicianno BE, Sharma N. Switching control ...
  • Molazadeh V, Zhang Q, Bao X, Sharma N. An iterative ...
  • Molazadeh V, Sheng Z, Sharma N. A within-stride switching controller ...
  • Molazadeh V, Sheng Z, Bao X, Sharma N. A robust ...
  • Rakhtala SM. Adaptive gain super twisting algorithm to control a ...
  • نمایش کامل مراجع