A shifted fractional-order Hahn functions Tau method for time-fractional PDE with nonsmooth solution

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 137

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-13-27_005

تاریخ نمایه سازی: 3 آبان 1402

چکیده مقاله:

In this paper, a new orthogonal system of nonpolynomial basis functions is introduced and used to solve a class of time-fractional partial differential equations that have nonsmooth solutions. In fact, unlike polynomial bases, such basis functions have singularity and are constructed with a fractional variable change on Hahn polynomials. This feature leads to obtaining more accurate spectral approximations than polynomial bases. The introduced method is a spectral method that uses the operational matrix of fractional order integral of fractional-order shifted Hahn functions and finally convertsthe equation into a matrix equation system. In the introduced method, no collocation method has been used, and initial and boundary conditions are applied during the execution of the method. Error and convergence analysis of the numerical method has been investigated in a Sobolev space. Finally, some numerical experiments are considered in the form of tables and figures to demonstrate the accuracy and capability of the proposed method.

کلیدواژه ها:

Fractional-order shifted Hahn functions ، Fractional-time partial differential equations ، Spectral method ، Error analysis ، Convergence Analysis

نویسندگان

N. Mollahasani

Department of applied mathematics, Graduate university of advanced technology, Kerman, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbaszadeh, M. and Dehghan, M. Numerical investigation of repro-ducing kernel ...
  • Abo-Gabal, H., Zaky, M.A. and Doha, E.H. Fractional Romanovski–Jacobi tau ...
  • Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. The fractional-order governing ...
  • Bhattacharyya, P.K. Distributions Generalized Functions with Applica-tions in Sobolev Spaces, ...
  • Bhrawy, A. and Zaky, M. An improved collocation method for ...
  • Canuto, C., Quarteroni, A., Hussaini, M.Y. and Zang, T.A. Spectral ...
  • Chen, S., Shen, J. and Wang, L. Generalized Jacobi functions ...
  • Dehghan, M., Abbaszadeh, M. and Mohebbi, A. Legendre spectral ele-ment ...
  • Deng, W. Finite element method for the space and time ...
  • Goertz, R. and Öffner, P. Spectral accuracy for the Hahn ...
  • Hendy, A.S. and Zaky, M.A. Global consistency analysis of L۱-Galerkin ...
  • Hesthaven, J.S., Gottlieb, S. and Gottlieb, D. Spectral methods for ...
  • Heydari, M., Avazzadeh, Z. and Atangana, A. Orthonormal shifted discrete ...
  • Hou, D., Hasan, M.T. and Xu, C. Muntz spectral methods ...
  • Jin, B., Lazarov, R. and Zhou, Z. Error estimates for ...
  • Jin, B., Lazarov, R. and Zhou, Z. Numerical methods for ...
  • Karlin, S. and McGregor, J.L. The Hahn polynomials, formulas and ...
  • Kreyszig, E. Introductory functional analysis with applications, John Wiley & ...
  • Latifi, S. and Delkhosh, M. Generalized Lagrange Jacobi‐Gauss‐Lobatto vs Jacobi‐Gauss‐Lobatto ...
  • Lui, S. and Nataj, S. Spectral collocation in space and ...
  • Lyu, P. and Vong, S. A nonuniform L۲ formula of ...
  • Nikan, O., Avazzadeh, Z. and Machado, J.T. Numerical investigation of ...
  • Parand, K. and Delkhosh, M. Operational matrices to solve nonlinear ...
  • Podlubny, I. Fractional differential equations: an introduction to frac-tional derivatives, ...
  • Saeedi, H. A fractional-order operational method for numerical treat-ment of ...
  • Saeedi, H. and Chuev, G.N. Triangular functions for operational ma-trix ...
  • Sakamoto, K. and Yamamoto, M. Initial value/boundary value problems for ...
  • Salehi, F., Saeedi, H. and Mohseni Moghadam, M. Discrete Hahn ...
  • Sheng, C., Shen, J., Tang, T., Wang, L. and Yuan, ...
  • Tarasov, V.E. Mathematical economics: Application of fractional calcu-lus, Mathematics ۸(۵) ...
  • Yang, Z., Liu, F., Nie, Y. and Turner, I. An ...
  • Zaky, M.A. Recovery of high order accuracy in Jacobi spectral ...
  • Zaky, M.A. and Ameen, I.G. A priori error estimates of ...
  • Zaky, M.A. and Hendy, A.S. Convergence analysis of an L۱-continuous ...
  • Zaky, M.A., Hendy, A.S. and Macías-Díaz, J.E. Semi-implicit Galerkin–Legendre spectral ...
  • Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport, Phys. Rep. ...
  • Zayernouri, M., Ainsworth, M. and Karniadakis, G.E. A unified Petrov–Galerkin ...
  • Zayernouri, M. and Karniadakis, G.E. Fractional Sturm–Liouville eigen-problems: theory and ...
  • نمایش کامل مراجع