Depth estimation of gravity anomalies by S-transform of analytic signal
محل انتشار: مجله فیزیک زمین و فضا، دوره: 41، شماره: 4
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 170
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESPHYS-41-4_011
تاریخ نمایه سازی: 26 مهر 1402
چکیده مقاله:
The S-transform has widely been used in the analysis of non-stationary time series. A simple method to obtain depth estimates of gravity field sources is introduced in this study. We have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. This calculation procedure is based on replacement of the Fourier transform with the S-Transform in traditional downward formula. We expect the localized estimation of the depth of anomalies using the S-transform spectrum rather than FFT spectrum. Likewise in the wavelets which don’t have a direct relationship with wave numbers, the S-Transform corresponds to wave number instead of scale or pseudo wavenumber. This is the main advantage of using S-transform instead of wavelets. This advantage will lead to easier and more precise calculation of depth estimation. Synthetic examples indicate the usefulness of this method. The method was applied to field examples producing reasonable results comparable to some common methods such as wavelet-based source characterization and Euler deconvolution. It is possible to average the local spectra over the wavenumber axis that leads to the spectrum referenced to position axis. The depth of anomaly can be computed in any point of the profile by using localization of spectrum. Thereby, we can analyze distinguished traces of shallow and deep anomalies while the lateral effects are also considered.
کلیدواژه ها:
نویسندگان
Naeim Mousavi
Ph.D. Candidate, Institute of Geophysics, University of Tehran, Tehran, Iran
Vahid Ebrahimzadeh Ardestani
Professor, Institute of Geophysics, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :