مقایسه عملکرد شبکه های عصبی مصنوعی (ANN) و مدل میانگین متحرک انباشته اتورگرسیو (ARIMA) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز در ایران
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 1,878
فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECONOMETRICS01_030
تاریخ نمایه سازی: 9 دی 1391
چکیده مقاله:
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژه ای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تأثیر گذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر می شوند. در این راستا تلاش سیاست گذاران در کاهش این نااطمینانی از طریق پیش بینی این متغیر با کمترین خطا بوده است. شبکه های عصبی مصنوعی از قابلیت بالایی در مدلسازی فرآیندهای پیچیده و پیش بینی مسیرهای غیر خطی پویا برخوردار هستند. لذا در این مطالعه سعی گردیده است تا با استفاده از شبکه عصبی مصنوعی (ANN) علاوه بر مدل سازی و پیش بینی روزانه نرخ ارز طی دوره زمانی فروردین 1381 تا اسفند 1384، و کمینه نمودن خطای پیش بینی توسط این روش، نتایج آن با مقادیر پیش بینی شده توسط مدل ARIMA بر اساس معیارهای اندازه گیری دقت پیش بینی، مورد مقایسه قرار گرفته و برای بررسی حساسیت نتایج مدل نسبت به نرخ ارز، تخمین مدل با روش مشابه برای سه دسته داده نرخ ارز دلار، یورو و پوند انجام گرفته است. نتایج تحقیق نشان می دهد که شبکه عصبی مورد استفاده، نسبت به مدل ARIMA از قدرت پیش بینی بهتری برخوردار است و قیمت نرخهای ارز پوند و یورو تابعی از قیمتهای روز گذشته خود و قیمت نرخ ارز دلار تابعی از قیمت 6 روز گذته خود است.
کلیدواژه ها:
نویسندگان
عباسعلی ابونوری
دانشگاه آزاد اسلامی واحد تهران مرکزی
فرداد فرخی
دانشگاه آزاد اسلامی واحد تهران مرکزی
سیده فاطمه شجاعیان
دانشگاه آزاد اسلامی واحد تهران مرکزی
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :