COVID-۱۹IraqKirkukDataset: Development and evaluation of an Iraqi dataset for COVID-۱۹ classification based on deep learning

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-1_196

تاریخ نمایه سازی: 5 شهریور 1402

چکیده مقاله:

In the last two years, the coronavirus (COVID-۱۹) pandemic put healthcare systems around the world under tremendous pressure. There have been intelligent systems (Machine Learning (ML) and Deep Learning (DL)) able to identify COVID-۱۹ from similar normal diseases. The algorithms use Imaging techniques (like Chest X-Rays) in classifying COVID-۱۹. Therefore, many global COVID-۱۹ datasets have been released. However, so far, no public local Iraqi dataset has been developed. Therefore, our contribution is two folds. First, we investigate the techniques of deep learning techniques in COVID-۱۹ classification. Second, we develop a new COVID-۱۹ dataset, namely, “Covid-۱۹IraqKirkukDataset” collected from hospitals in Kirkuk, Iraq. To the best of our knowledge, our dataset is the first COVID-۱۹ dataset. Then, the evaluation of Covid۱۹IraqKirkukDataset using Convolutional Neural Networks (CNNs) demonstrates promising classification outcomes.

نویسندگان

Mohammed Ahmed

Computer Science Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, Iraq

Ahmed Fakhrudeen

Software Department, College of Computer Science and Information Technology, Kirkuk University, Kirkuk, Iraq