Design of a light-weighted model for enhancement of Malaria Parasite Detection
محل انتشار: اولین کنگره بین المللی هوش مصنوعی در علوم پزشکی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 82
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMS01_261
تاریخ نمایه سازی: 1 مرداد 1402
چکیده مقاله:
One of the most serious public health issues in the world is malaria. In many underdevelopednations, it is a major source of disease and mortality for children and expectant mothers whichare the most vulnerable populations. Traditional laboratory malaria diagnosis requires a skilledindividual and meticulous examination to distinguish between healthy and infected red bloodcells (RBCs). The traditional method of carrying out this operation involves a lot of manuallabor that must be done by a human and requires a lot of time and resources. Cognitive computingand machine learning techniques have advanced, and they are now widely employed in thehealthcare sector to detect and anticipate early disease symptoms. Healthcare providers can makeinformed decisions for patient diagnosis and treatment using early prediction results. As of today,researchers implement the most popular image recognition models such as ResNet۵۰, VGG۱۹,and InceptionV۳, ImageNet to detect parasites; However, these models are weighty as a matterof pre-trained weights and a considerable number of layers. This study explores the use of deeplearning algorithms to achieve not only an efficient model but also a light-weighted architectureby customizing the network with an optimal number of layers and parameters. As a result, theproposed model achieves better accuracy with respect to other research works like ResNet۵۰ andVGG۱۹ while having the fewest network parameters.
کلیدواژه ها:
نویسندگان
Ali Moshiri
Electrical Engineering Department, Bologna University, Italy
Mehran Razzaghighaleh
Electrical Engineering Department, Bologna University, Italy