Machine learning model-based optimization of solar-powered direct volumetric steam generation

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 236

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CLEANENERGY08_081

تاریخ نمایه سازی: 27 تیر 1402

چکیده مقاله:

In recent years solar-powered desalination systems have received much attention as a clean and sustainable solution to freshwater demand. One challenge in the field is to maximize the system’s efficiency. This study focuses on the volumetric direct solar steam generation and provides a model-based optimization using support vector regression and decision tree regression ensemble molding. The model achieves train R۲=۰.۹۹, validation R۲=۰.۹۱, and test R۲=۰.۹۲. For optimization, Nelder-Mead and differential evolution methods are used. Results predict that suspending ۰.۰۱۵ weight-percent of GNP-MWCNT to water achieves the maximum efficiency under ۱ kW/m radiation.

نویسندگان

Farzad Azizi Zade

M.Sc. student, Ferdowsi University of Mashhad, City;

Mohammad Mustafa Ghafurian

Assistant professor, Ferdowsi University of Mashhad, City;

Ali Afsharian

M.Sc. student, Jacobs University Bremen, City;

Hamid Niazmand

Professor, Ferdowsi University of Mashhad, City;