Improved Facial Action Unit Recognition using Local and Global Face Features
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 140
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-11-2_004
تاریخ نمایه سازی: 27 تیر 1402
چکیده مقاله:
Every facial expression involves one or more facial action units appearing on the face. Therefore, action unit recognition is commonly used to enhance facial expression detection performance. It is important to identify subtle changes in face when particular action units occur. In this paper, we propose an architecture that employs local features extracted from specific regions of face while using global features taken from the whole face. To this end, we combine the SPPNet and FPN modules to architect an end-to-end network for facial action unit recognition. First, different predefined regions of face are detected. Next, the SPPNet module captures deformations in the detected regions. The SPPNet module focuses on each region separately and can not take into account possible changes in the other areas of the face. In parallel, the FPN module finds global features related to each of the facial regions. By combining the two modules, the proposed architecture is able to capture both local and global facial features and enhance the performance of action unit recognition task. Experimental results on DISFA dataset demonstrate the effectiveness of our method.
کلیدواژه ها:
نویسندگان
Foad Ghaderi
Human-Computer Interaction Lab., Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Amin Rahmati
Human-Computer Interaction Lab., Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :