Deep Learning-Based Approach for Classification Of Mental Tasks From Electroencephalogram Signals
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 80
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AJNPP-10-1_001
تاریخ نمایه سازی: 11 تیر 1402
چکیده مقاله:
Background and Objective: Electroencephalography (EEG) analysis is an important tool for neuroscience, brain-computer interface studies, and biomedical studies. The primary purpose of Brain-Computer Interface (BCI) studies is to establish communication between disabled individuals, other individuals, and machines with brain signals. Interpreting and classifying the brain's response during different cognitive tasks will contribute to brain-computer interface studies. Therefore, in this study, five cognitive tasks were classified from EEG signals.
Material and Methods: In this study, five neuropsychological tests (Öktem Verbal Memory Processes Test, WMS-R Visual Memory Subtest, Digit Span Test, Corsi Block Test, and Stroop Test) were administered to ۳۰ healthy individuals. The tests assess the volunteers' abilities in verbal memory, visual memory, attention, concentration, working memory, and reaction time. The EEG signals were recorded while the tests were administered to the volunteers. The tests were classified using two different deep learning algorithms, ۱D Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), from the recorded EEG signals.
Results: When the success of the tests was evaluated, classification success was achieved with an accuracy of ۸۸.۵۳% in the CNN deep learning algorithm and ۸۹.۸۰% in the LSTM deep algorithm. Precision, recall, and F۱-score values for CNN were calculated at ۰.۸۸, ۰.۸۷, and ۰.۸۷, respectively, while precision, recall, and f۱-score values for the LSTM network were obtained at ۰.۹۰, ۰.۸۹, and ۰.۸۹.
Conclusion: Following the findings of the present study, five different cognitive tasks were able to be classified with high accuracy from EEG signals using deep learning algorithms.
کلیدواژه ها:
نویسندگان
Evin Şahin Sadık
Kütahya Dumlupinar University, Faculty of Engineering Dept. of Electrical Electronics Eng., Kütahya, Turkey.
Hamdi Melih SARAOĞLU
Kütahya Dumlupinar University, Faculty of Engineering Dept. of Electrical Electronics Eng., Kütahya, Turkey.
Sibel Canbaz Kabay
Kütahya Health Sciences University, Faculty of Medicine, Dept. of Neurology, Kütahya, Turkey
Cahit Keskinkılıç
Department of Psychology, İstanbul Gedik University, İstanbul, Turkey.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :