۱WQC pattern scheduling to minimize the number of physical qubits

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 174

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-11-2_014

تاریخ نمایه سازی: 4 تیر 1402

چکیده مقاله:

kground and Objectives: One of the quantum computing models without a direct classical counterpart is one-way quantum computing (۱WQC). The computations are represented by measurement patterns in this model. One of the main downsides of the ۱WQC model is the much larger number of qubits in a measurement pattern, compared to its equivalent in the circuit model. Therefore, proposing a method for optimally using the physical qubits to implement a measurement pattern is of interest,Methods: In a measurement pattern, despite a large number of qubits, the measured qubit is not needed after each measurement and can be used as another logical qubit. In this study, by using this feature and presenting an integer linear programming (ILP) model to change the ordering of a standard measurement pattern actions, the number of physical qubits required to implement that measurement pattern is minimized. Results: In the proposed method, compared to the scheduling based on the standard pattern, the number of required physical qubits on benchmark circuits is reduced by ۵۶.۷% on average. Although the proposed method produces the optimal solution, one of the most important limitations of that and ILP-based methods, in general, is their high execution time and memory requirements, which grow exponentially with the increase of the problem size. Conclusions: In this study, an ILP model is proposed to minimize the number of physical qubits used to realize a measurement pattern by efficiently scheduling the operations and reusing the physical qubits. Due to its exponential complexity, the proposed method cannot be used for large measurement patterns whose solution can be conspired as future works.

کلیدواژه ها:

نویسندگان

E. Nikahd

Computer Systems Architecture Department, Faculty of Computer Engineering , Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.

M. Houshmand

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

M. Houshmand

Department of Electrical Engineering, Imam Reza International University, Mashhad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum ...
  • M. Nakahara, Quantum Computing: From Linear Algebra to Physical Realizations. ...
  • G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation ...
  • D. McMahon, Quantum Computing Explained. John Wiley & Sons, ۲۰۰۷ ...
  • R. Raussendorf, H. J. Briegel, "A one-way quantum computer," Phys. ...
  • R. Jozsa, An Introduction to Measurement Based Quantum Computation, NATO ...
  • V. Danos, E. Kashefi, P. Panangaden, S. Perdrix, Extended Measurement ...
  • D. E. Browne, E. Kashefi, M. Mhalla, S. Perdrix, "Generalized ...
  • B. Lanyon, P. Jurcevic, M. Zwerger, C. Hempel, E. Martinez, ...
  • J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, ...
  • C. Reimer, S. Sciara, P. Roztocki, M. Islam, L. Romero ...
  • M. Zwerger, H. Briegel, W. D¨ur, "Hybrid architecture for encoded ...
  • M. Zwerger, H. Briegel, W. D¨ur, "Measurement-based quantum communication," Appl. ...
  • E. Nikahd, M. Houshmand, M. S. Zamani, M. Sedighi, "One-way ...
  • M. Houshmand, M. Houshmand, J. F. Fitzsimons, "Minimal qubit resources ...
  • E. Nikahd, M. Houshmand, M. S. Zamani, M. Sedighi, "OWQS: ...
  • E. Nikahd, M. Houshmand, M. S. Zamani, M. Sedighi, "GOWQS: ...
  • A. Broadbent, J. Fitzsimons, E. Kashefi, "Universal blind quantum computation," ...
  • J. Fitzsimons, E. Kashefi, "Unconditionally verifiable blind quantum computation," Phys. ...
  • M. Houshmand, M. Houshmand, S. Tan, J. Fitzsimons, "Composable secure ...
  • A. Farghadan, N. Mohammadzadeh, "Quantum circuit physical design flow for ...
  • A. Farghadan, N. Mohammadzadeh, "Mapping quantum circuits on ۳D nearest-neighbor ...
  • A. M. Childs, E. Schoute, C. M. Unsal, "Circuit transformations ...
  • G. Li, Y. Ding, Y. Xie, "Tackling the qubit mapping ...
  • A. Zulehner, A. Paler, R. Wille, "An efficient methodology for ...
  • R. Wille, L. Burgholzer, A. Zulehner, "Mapping quantum circuits to ...
  • P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, ...
  • E. Nikahd, N. Mohammadzadeh, M. Sedighi, M. S. Zamani, "Automated ...
  • E. T. Campbell, J. Fitzsimons, "An introduction to one-way quantum ...
  • S. C. Benjamin, J. Eisert, T. M. Stace, "Optical generation ...
  • J. Chen, L. Wang, E. Charbon, B. Wang, "Programmable architecture ...
  • S. Sanaei, N. Mohammadzadeh, "Qubit mapping of one-way quantum computation ...
  • A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, ...
  • V. V. Albert & P. Faist, eds., The Error Correction ...
  • D. Maslov, Reversible logic synthesis Benchmarks page, ۲۰۲۱. https://reversiblebenchmarks.github.io[۳۶] A. ...
  • M. Houshmand, M. H. Samavatian, M. S. Zamani, M. Sedighi, ...
  • نمایش کامل مراجع