An effective Feature Selection with Social MimicOptimization Algorithm
محل انتشار: اولین کنفرانس بین المللی و ششمین کنفرانس ملی کامپیوتر، فناوری اطلاعات و کاربردهای هوش مصنوعی
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 253
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CEITCONF06_020
تاریخ نمایه سازی: 26 خرداد 1402
چکیده مقاله:
Hundreds of variables in data lead to data with veryhigh dimensions, allowing many feature selection methods to bedeveloped. The purpose of feature selection in machine learning,pattern recognition, and data mining is to choose features thatwill enhance learning performance. The aim of this paper is touse the binary version of the Social Mimic Optimization (SMO)algorithm as Binary Social Mimic Optimization (BSMO) forfeature selection. The combined fitness function is chosen becauseof its three main objectives: reducing classification error,balancing sensitivity and specificity, and reducing the number ofselected features. The proposed method is compared with severaloptimization methods, including Binary Genetic Algorithms(BGA) and Particle Swarm Optimization (BPSO), as well as withBinary Atom Search Optimization (BASO). The results of theevaluation using five UCI datasets show that the proposedmethod is superior to others for solving optimization problems.
کلیدواژه ها:
نویسندگان
Mohammad Ansari Shiri
Department of Computer ScienceShahid Bahonar UniversityKerman, Iran
Najme Mansouri
Department of Computer ScienceShahid Bahonar UniversityKerman, Iran