An effective Feature Selection with Social MimicOptimization Algorithm

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 253

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CEITCONF06_020

تاریخ نمایه سازی: 26 خرداد 1402

چکیده مقاله:

Hundreds of variables in data lead to data with veryhigh dimensions, allowing many feature selection methods to bedeveloped. The purpose of feature selection in machine learning,pattern recognition, and data mining is to choose features thatwill enhance learning performance. The aim of this paper is touse the binary version of the Social Mimic Optimization (SMO)algorithm as Binary Social Mimic Optimization (BSMO) forfeature selection. The combined fitness function is chosen becauseof its three main objectives: reducing classification error,balancing sensitivity and specificity, and reducing the number ofselected features. The proposed method is compared with severaloptimization methods, including Binary Genetic Algorithms(BGA) and Particle Swarm Optimization (BPSO), as well as withBinary Atom Search Optimization (BASO). The results of theevaluation using five UCI datasets show that the proposedmethod is superior to others for solving optimization problems.

نویسندگان

Mohammad Ansari Shiri

Department of Computer ScienceShahid Bahonar UniversityKerman, Iran

Najme Mansouri

Department of Computer ScienceShahid Bahonar UniversityKerman, Iran