EEG-based Emotion Recognition through Deep Learning Models: A Comprehensive Study

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 132

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DMECONF08_227

تاریخ نمایه سازی: 18 اردیبهشت 1402

چکیده مقاله:

Emotions play a crucial role in human communications. Emotion recognition has several applications in different fields such as brain-computer interaction, psychology, medicine, neuro-feedback, computer games, education, etc. This shows that emotion recognition is of great importance. Several modalities have been proposed for emotion recognition such as physiology-based methods, facial expression, etc. Electroencephalography (EEG)-based emotion recognition has been reported to be one of the most effective and practical emotion recognition methods. However, first studies showed lower emotion recognition accuracies. Thanks to advancement in machine learning, now it is possible to improve classification performance. Recently, numerous studies have employed advanced machine learning methods like deep learning models to enhance emotion recognition performance. In this study, several deep learning models were used to increase the performance. These methods were applied to three reliable and popular emotion datasets to draw a comprehensive comparison. We introduced four deep learning models in this paper. Results are discussed in details. Results showed that our proposed methods are effective as we achieved emotion recognition rates as high as ۹۸.۵%. We tried to conduct a comprehensive study in EEG-based emotion recognition and consider all the aspects in this paper. This paper can be used as a reference for future studies as it has employed several emotion recognition methods applied to three emotion databases.

نویسندگان

Morteza Zangeneh Soroush

Concordia Institute for Information Systems Engineering

Yong Zeng

Concordia University, Montreal, H۳G ۱M۸, Quebec, Canada