تاثیر پردازش متغیرهای ورودی شاخص بارش استاندارد در پیش بینی خشکسالی در شبکه های عصبی مصنوعی با استفاده از تبدیل موجک
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 287
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJRDR-22-3_016
تاریخ نمایه سازی: 27 فروردین 1402
چکیده مقاله:
خشکسالی یک رویداد طبیعی است که می تواند خسارات قابل توجهی را به زندگی بشر وارد سازد. پیش بینی خشکسالی نقش موثری را در مدیریت منابع آب ایفا می کند. در این تحقیق به منظور پیش بینی خشکسالی سه مدل ترکیبی از انواع شبکه های عصبی و تبدیل موجک ارائه شده است و سپس با استفاده از این مدل ها، شاخص بارش استاندارد (SPI) برای ۱۲ ماه آینده در ایستگاه سینوپتیک یزد پیش بینی گردیده است. شبکه های عصبی مصنوعی توانایی بالایی در پیش بینی سری های زمانی غیرخطی دارند. تبدیل موجک نیز با تجزیه سری های زمانی اصلی به سیگنال های فرعی منجر به وضوح بهتر آنها می گردد. در تحقیق حاضر با استفاده از مدل های ترکیبی، که شامل شبکه های پرسپترون موجکی(MLP-W)، شبکه های برگشتی موجکی(TR-W) و شبکه های برگشتی با تاخیر زمانی موجکی (TLRN-W) می باشند، به پیش بینی سیگنال های فرعی حاصل از تبدیل موجک پرداخته شده است. همچنین به منظور بررسی تاثیر تبدیل موجک در عملکرد مدل های ترکیبی، نتایج حاصل از این مدل ها با نتایج بدست آمده از مدل های شبکه عصبی منفرد مقایسه و کارایی آنها با استفاده از برخی آماره های ارزیابی اندازه گیری شده است. در نهایت، نتایج بدست آمده از مدل های ترکیبی، ضریب همبستگی بالاتر و خطای پایین تری را نسبت به مدل های منفرد، نشان داده اند. ضریب همبستگی در بهترین مدل ترکیبی (TLRN-W) حدود ۹۷۷/۰ و RMSE وMAE بترتیب ۰۵/۰ و۰۲۰/۰ بدست آمد در حالی که این مقادیر در بهترین مدل منفرد (TLRN) بترتیب برابر با ۸۹۵/۰ ، ۰۷/۰ و۰۲۰/۰ اندازه گیری گردید. در مجموع یافته های این تحقیق، بهبود کارایی شبکه های عصبی در پیش بینی شاخص خشکسالی را با استفاده از تبدیل موجک نشان می دهند.
کلیدواژه ها:
نویسندگان
حمیده افخمی
نویسنده مسئول، دانشجوی دکتری، علوم و مهندسی آبخیزدارای، دانشکده منابع طبیعی و کویر شناسی، دانشگاه یزد، ایران
محمدرضا اختصاصی
دانشیار، دانشکده منابع طبیعی و کویر شناسی دانشگاه یزد، ایران
مژده محمدی
دانشجوی دکتری، علوم و مهندسی آبخیزدارای، دانشکده منابع طبیعی و کویر شناسی، دانشگاه یزد، ایران