پیش بینی جریان سالانه رودخانه با استفاده از مدل خودهمبسته تجمعی میانگین متحرک و رگرسیون فازی
محل انتشار: فصلنامه دانش آب و خاک، دوره: 19، شماره: 1
سال انتشار: 1388
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 84
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WASO-19-0_006
تاریخ نمایه سازی: 15 اسفند 1401
چکیده مقاله:
رشد روزافزون جمعیت و محدودیت منابع آب سطحی در کشور، لزوم پیش بینی دقیق تر مقدار آورد رودخانه را به دلیل اهمیت در برنامه ریزی و مدیریت منابع آب از جمله بهره برداری از مخازن و طراحی سازه های کنترل سیلاب با استفاده از ابزارها و روش های نوین مدلسازی می طلبد. در این راستا، مدل های سری زمانی از دیرباز مورد توجه هیدرولوژیست ها بوده اند. هدف این تحقیق، ارزیابی کارآیی دو رهیافت کلی مدل سری زمانی و رگرسیون فازی در پیش بینی جریان سالانه رودخانه می باشد. در مدل خودهمبسته تجمعی میانگین متحرک از رهیافت سری زمانی، کارآیی روش های درستنمایی شرطی و درستنمایی غیر شرطی در تخمین پارامترهای مدل مورد بررسی قرار گرفت. در مدل رگرسیون فازی، به منظور در نظرگرفتن عدم قطعیت حاکم بر سیستمهای طبیعی، از تابع عضویت مثلثی متقارن و نامتقارن استفاده شد. به منظور مقایسه کارآیی دو مدل مذکور در پیش بینی جریان سالانه، آمار آبدهی برخی از ایستگاه های حوضه آبریز دریاچه ارومیه بکار گرفته شد. نتایج نشان دادند که در بین روش های تخمین پارامترها، روش درستنمایی غیر شرطی به عنوان روش کارآمد در تخمین پارامترهای مدل ARIMA می باشد. مقایسه جریان های سالانه پیش بینی شده توسط مدل های ARIMA و رگرسیون فازی براساس معیارهایی مانند RMSE، دلالت بر عملکرد بهتر رهیافت رگرسیون فازی نسبت به مدل سری زمانی داشت. عملکرد بهتر تابع عضویت مثلثی متقارن نسبت به نوع نامتقارن آن از حیث درنظر گرفتن عدم قطعیت حاکم بر مسئله مدلسازی از دیگر نتایج این تحقیق می باشد.
کلیدواژه ها:
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :