AN INTELLIGENCE FUZZY CLASSIFICATION SYSTEM FOR DIABETES DISEASE DETECTION
محل انتشار: دهمین کنفرانس سیستم های فازی ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,676
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICFUZZYS10_084
تاریخ نمایه سازی: 9 شهریور 1391
چکیده مقاله:
In this paper, we present a fuzzy rule-base classification system to detection of diabetes disease, named DiabMiner. DiabMiner system generates a set of fuzzy classification rules from labeled data by using an ant colony optimization (ACO) algorithm. These rules are represented in linguistic forms that are easily interpreted and examined by users. Each input pattern maybe compatible (can classify by multiple rules) with several fuzzy rules. Therefore, a fuzzy inference engine is used which classifies the input patterns based on multiple ifthen rules voting method. The results reveal that DiabMiner outperforms several famous methods in classification accuracy for diabetes disease detection.
کلیدواژه ها: