AN INTELLIGENCE FUZZY CLASSIFICATION SYSTEM FOR DIABETES DISEASE DETECTION

سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,676

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICFUZZYS10_084

تاریخ نمایه سازی: 9 شهریور 1391

چکیده مقاله:

In this paper, we present a fuzzy rule-base classification system to detection of diabetes disease, named DiabMiner. DiabMiner system generates a set of fuzzy classification rules from labeled data by using an ant colony optimization (ACO) algorithm. These rules are represented in linguistic forms that are easily interpreted and examined by users. Each input pattern maybe compatible (can classify by multiple rules) with several fuzzy rules. Therefore, a fuzzy inference engine is used which classifies the input patterns based on multiple ifthen rules voting method. The results reveal that DiabMiner outperforms several famous methods in classification accuracy for diabetes disease detection.