An approximation to the solution of one-dimensional hyperbolic telegraph equation based on the collocation of quadratic B-spline functions

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 154

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-9-4_018

تاریخ نمایه سازی: 15 بهمن 1401

چکیده مقاله:

In this work, the collocation method based on B-spline functions is used to obtain a numerical solution for a one-dimensional hyperbolic telegraph equation. The proposed method is consists of two main steps. As the first step, by using a finite difference scheme for the time variable, a partial differential equation is converted to an ordinary differential equation by the space variable. In the next step, for solving this equation collocation method is used. In the analysis section of the proposed method, the convergence of the method is studied. Also, some numerical results are given to demonstrate the validity and applicability of the presented technique. The L∞, L۲, and Root-Mean Square(RMS) in the solutions show the efficiency of the method computationally.

کلیدواژه ها:

Quadratic B-spline ، One-dimensional hyperbolic telegraph equation ، Collocation method ، Convergence analysis

نویسندگان

Mohammad Zarebnia

Department of Mathematics, University of Mohaghegh Ardabili, ۵۶۱۹۹-۱۱۳۶۷ Ardabil, Iran.

Reza Parvaz

Department of Mathematics, University of Mohaghegh Ardabili, ۵۶۱۹۹-۱۱۳۶۷ Ardabil, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Biazar, H. Ebrahimi, and Z. Ayati, An approximation to ...
  • I. Dag, A. Dogan, and B. Saka, B-spline collocation methods ...
  • M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional ...
  • H. F. Dinga, Y. X. Zhangb, J. X. Caoa, and ...
  • D. J. Evans and H. Bulut, The numerical solution of ...
  • F. Gao and C. Chi, Unconditionally stable difference schemes for ...
  • M. Garshasbi and M. Khakzad, The RBF collocation method of ...
  • M. Garshasbi and F. Momeni, Numerical solution of Hirota-Satsuma coupled ...
  • M. M. Hosseini, S. T Mohyud-Din, S. M. Hosseini, and ...
  • A. Jeffrey, Advanced engineering mathematics, Harcourt Academic Press, ۲۰۰۲ ...
  • D. Kincad and W. Cheny, Numerical analysis, Brooks/COLE, ۱۹۹۱ ...
  • R.C. Mittal and R. Bhatia, Numerical solution of second order ...
  • S. Momani, Analytic and approximate solutions of the space- and ...
  • R. Parvaz and M. Zarebnia, Cubic B-spline collocation method for ...
  • P. M. Prenter, Spline and Variational Methods, Wiley, New York, ...
  • L. Schumaker, Spline functions: basic theory, Cambridge University Press, ۲۰۰۷ ...
  • S. Sharifi and J. Rashidinia, Numerical solution of hyperbolic telegraph ...
  • J. N. Sharma, K. Singh, and J. N. Sharma, Partial ...
  • J. Stoer and R. Bulirsch, Introduction to numerical analysis, third ...
  • S. Toubaei, M. Garshasbi, and M. Jalalvand, A numerical treatment ...
  • M. Zarebnia and R. Parvaz, On the numerical treatment and ...
  • نمایش کامل مراجع