Learners grouping improvement in e-learning environment using fuzzy inspired PSO method
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,513
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICELEARNING06_006
تاریخ نمایه سازی: 30 مرداد 1391
چکیده مقاله:
Recent advances in technology and the integration of these advances in instructional design have led to a mass individualization where personalized instruction is offered simultaneously to large groups of learners. The first step to adapt instruction to group of learners is learners grouping. Many methods have used to group learners in e-learning environment specially data mining techniques such as clustering methods. This paper aims to propose a clustering method to group learners using some specific learners’ observable behavior while working by system and based on cognitive style. The objective function of proposed method is defined by considering two criteria in measuring the clustering goodness, compactness and separation, and Particle Swarm Optimization (PSO) method is used to optimize the objective function. This method used to group learners based on cognitive style. Results of the proposed method are compared with K-means, fuzzy C-means, and EFC methods using Davies-Bouldin cluster validity index and comparing the achieved groups and the cognitive style of learners who are in the same group, shows that the grouping accuracy is in a higher level using fuzzy-inspired PSO method and this method has the better clustering performance than the others and groups similar learners in one cluster.
کلیدواژه ها:
e-Learning System ، cognitive Style ، Grouping ، Fuzzy clustering ، Particle Swarm Optimization (PSO)
نویسندگان
Fatemeh Ghorbani
Information Technology Department, School of Engineering,Tarbiat Modares University,Tehran, Iran
Gholam Ali Montazer
Information Technology Department, School of Engineering, Tarbiat Modares University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :