A new numerical fractional differentiation formula to approximate the Caputo-Fabrizio fractional derivative: error analysis and stability

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 155

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-10-1_002

تاریخ نمایه سازی: 9 بهمن 1401

چکیده مقاله:

In the present work, first of all, a new numerical fractional differentiation formula (called the CF۲ formula) to approximate the Caputo-Fabrizio fractional derivative of order α, (۰ < α < ۱) is developed. It is established by means of the quadratic interpolation approximation using three points (tj−۲,y(tj−۲)),(tj−۱,y(tj−۱)), and (tj, y(tj)) on each interval [tj−۱,tj] for (j ≥ ۲), while the linear interpolation approximation are applied on the first interval [t۰,t۱]. As a result, the new formula can be formally viewed as a modification of the classical CF۱ formula, which is obtained by the piecewise linear approximation for y(t). Both the computational efficiency and numerical accuracy of the new formula is superior to that of the CF۱ formula. The coefficients and truncation errors of this formula are discussed in detail. Two test examples show the numerical accuracy of the CF۲ formula. The CF۱ formula demonstrates that the new CF۲ is much more effective and more accurate than the CF۱ when solving fractional differential equations. Detailed stability analysis and region stability of the CF۲ are also carefully investigated.

نویسندگان

Leila Moghadam Dizaj Herik

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

Mohammad Javidi

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

Mahmoud Shafiee

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Ahmad, S. K. Ntouyas, and A. Assolami, Caputo type ...
  • M. S. Asl, M. Javidi, and Y. Yan, A novel ...
  • D. Baleanu, G. C. Wu, and S. D. Zeng, Chaos ...
  • M. Caputo and M. Fabrizio, A new definition of fractional ...
  • R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential ...
  • R. Gorenflo and F. Mainardi, Fractional calculus, in: Fractals and ...
  • C. Li, Q. Yi and A. Chen, Finite difference methods ...
  • K. M. Owolabi and A. Atangana, Analysis and application of ...
  • S. Qureshi, N.A. Rangaig, and D. Baleanu, New numerical aspects ...
  • B. Ross, Fractional calculus and its applications: proceedings of the ...
  • J. Stoer and B. Roland, Introduction to numerical analysis, Springer ...
  • Y. Wang and T. Li, Stability analysis of fractional-order nonlinear ...
  • X. J. Yang, H. M. Srivastava, and J. Machado, A ...
  • F. Zhang and C. Li, Stability analysis of fractional differential ...
  • نمایش کامل مراجع