Clustering with K-Means Hybridization Ant Colony Optimization (K-ACO)
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 298
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAC-12-2_006
تاریخ نمایه سازی: 27 دی 1401
چکیده مقاله:
One of well-known techniques in data mining is clustering. Clustering method which is very popular is K-means cluster because its algorithm is very easy and simple. However, K-means cluster has some weaknesses, one of which is that the cluster result is sensitive towards centroid initialization so that the cluster result tends to local optimal. This paper explains the modification of K-means cluster, that is, K-means hybridization with ant colony optimization (K-ACO). Ant Colony Optimization (ACO) is optimization algorithm based on ant colony behavior. Through K-ACO, the weaknesses of cluster result which tends to local optimal can be overcome well. The application of hybrid method of K-ACO with the use of R program gives better accuracy compared to K-means cluster. K-means cluster accuracy yielded by Minitab, Mathlab, and SAS at iris data is ۸۹%. Meanwhile, K-ACO hybrid clustering with R program simulated on ۳۸ treatments with ۳-time repetitions gives accuracy result of ۹۳,۱۰%.
کلیدواژه ها:
نویسندگان
Dewi Ratnaningsih
Jl. Cabe Raya Pondok Cabe Pamulang